Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network Anomaly Detection Using Federated Learning (2303.07452v1)

Published 13 Mar 2023 in cs.LG and cs.DC

Abstract: Due to the veracity and heterogeneity in network traffic, detecting anomalous events is challenging. The computational load on global servers is a significant challenge in terms of efficiency, accuracy, and scalability. Our primary motivation is to introduce a robust and scalable framework that enables efficient network anomaly detection. We address the issue of scalability and efficiency for network anomaly detection by leveraging federated learning, in which multiple participants train a global model jointly. Unlike centralized training architectures, federated learning does not require participants to upload their training data to the server, preventing attackers from exploiting the training data. Moreover, most prior works have focused on traditional centralized machine learning, making federated machine learning under-explored in network anomaly detection. Therefore, we propose a deep neural network framework that could work on low to mid-end devices detecting network anomalies while checking if a request from a specific IP address is malicious or not. Compared to multiple traditional centralized machine learning models, the deep neural federated model reduces training time overhead. The proposed method performs better than baseline machine learning techniques on the UNSW-NB15 data set as measured by experiments conducted with an accuracy of 97.21% and a faster computation time.

Citations (3)

Summary

We haven't generated a summary for this paper yet.