Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exotic energy injection in the early universe II: CMB spectral distortions and constraints on light dark matter (2303.07370v2)

Published 13 Mar 2023 in astro-ph.CO and hep-ph

Abstract: We calculate the post-recombination contribution to the Cosmic Microwave Background (CMB) spectral distortion due to general exotic energy injections, including dark matter (DM) decaying or annihilating to Standard Model particles. Upon subtracting the background distortion that would be present even without such energy injections, we find residual distortions that are still potentially large enough to be detectable by future experiments such as PIXIE. The distortions also have a high-energy spectral feature that is a unique signature of the injection of high-energy particles. We present a calculation of the global ionization history in the presence of decaying dark matter with sub-keV masses, and also show that previous calculations of the global ionization history in the presence of energy injection are not significantly modified by these additional spectral distortions. Our improved treatment of low-energy electrons allows us to extend calculations of the CMB anisotropy constraints for decaying DM down to arbitrarily low masses. We also recast these bounds as constraints on the coupling of axion-like particles to photons.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (96)
  1. Tracy R. Slatyer, Nikhil Padmanabhan,  and Douglas P. Finkbeiner, “CMB Constraints on WIMP Annihilation: Energy Absorption During the Recombination Epoch,” Phys. Rev. D 80, 043526 (2009), arXiv:0906.1197 [astro-ph.CO] .
  2. Toru Kanzaki, Masahiro Kawasaki,  and Kazunori Nakayama, “Effects of Dark Matter Annihilation on the Cosmic Microwave Background,” Prog. Theor. Phys. 123, 853–865 (2010), arXiv:0907.3985 [astro-ph.CO] .
  3. Roberta Diamanti, Laura Lopez-Honorez, Olga Mena, Sergio Palomares-Ruiz,  and Aaron C. Vincent, “Constraining Dark Matter Late-Time Energy Injection: Decays and P-Wave Annihilations,” JCAP 02, 017 (2014), arXiv:1308.2578 [astro-ph.CO] .
  4. Carmelo Evoli, Andrei Mesinger,  and Andrea Ferrara, “Unveiling the nature of dark matter with high redshift 21 cm line experiments,” JCAP 11, 024 (2014), arXiv:1408.1109 [astro-ph.HE] .
  5. Tracy R. Slatyer, “Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results,” Phys. Rev. D 93, 023527 (2016a), arXiv:1506.03811 [hep-ph] .
  6. Laura Lopez-Honorez, Olga Mena, Ángeles Moliné, Sergio Palomares-Ruiz,  and Aaron C. Vincent, “The 21 cm signal and the interplay between dark matter annihilations and astrophysical processes,” JCAP 08, 004 (2016), arXiv:1603.06795 [astro-ph.CO] .
  7. Hongwan Liu, Tracy R. Slatyer,  and Jesús Zavala, “Contributions to cosmic reionization from dark matter annihilation and decay,” Phys. Rev. D 94, 063507 (2016), arXiv:1604.02457 [astro-ph.CO] .
  8. Tracy R. Slatyer and Chih-Liang Wu, “General Constraints on Dark Matter Decay from the Cosmic Microwave Background,” Phys. Rev. D 95, 023010 (2017), arXiv:1610.06933 [astro-ph.CO] .
  9. Vivian Poulin, Julien Lesgourgues,  and Pasquale D. Serpico, “Cosmological constraints on exotic injection of electromagnetic energy,” JCAP 03, 043 (2017), arXiv:1610.10051 [astro-ph.CO] .
  10. Guido D’Amico, Paolo Panci,  and Alessandro Strumia, “Bounds on Dark Matter annihilations from 21 cm data,” Phys. Rev. Lett. 121, 011103 (2018), arXiv:1803.03629 [astro-ph.CO] .
  11. Hongwan Liu and Tracy R. Slatyer, ‘‘Implications of a 21-cm signal for dark matter annihilation and decay,” Phys. Rev. D 98, 023501 (2018), arXiv:1803.09739 [astro-ph.CO] .
  12. Kingman Cheung, Jui-Lin Kuo, Kin-Wang Ng,  and Yue-Lin Sming Tsai, “The impact of EDGES 21-cm data on dark matter interactions,” Phys. Lett. B 789, 137–144 (2019), arXiv:1803.09398 [astro-ph.CO] .
  13. Andrea Mitridate and Alessandro Podo, “Bounds on Dark Matter decay from 21 cm line,” JCAP 05, 069 (2018), arXiv:1803.11169 [hep-ph] .
  14. Steven Clark, Bhaskar Dutta, Yu Gao, Yin-Zhe Ma,  and Louis E. Strigari, “21 cm limits on decaying dark matter and primordial black holes,” Phys. Rev. D 98, 043006 (2018), arXiv:1803.09390 [astro-ph.HE] .
  15. Michael Walther, Jose Oñorbe, Joseph F. Hennawi,  and Zarija Lukić, “New Constraints on IGM Thermal Evolution from the Lyα𝛼\alphaitalic_α Forest Power Spectrum,” Astrophys. J. 872, 13 (2019), arXiv:1808.04367 [astro-ph.CO] .
  16. Samuel D. McDermott and Samuel J. Witte, “Cosmological evolution of light dark photon dark matter,” Phys. Rev. D 101, 063030 (2020), arXiv:1911.05086 [hep-ph] .
  17. Prakash Gaikwad et al., “Probing the thermal state of the intergalactic medium at z >>> 5 with the transmission spikes in high-resolution Ly α𝛼\alphaitalic_α forest spectra,” Mon. Not. Roy. Astron. Soc. 494, 5091–5109 (2020), arXiv:2001.10018 [astro-ph.CO] .
  18. Andrea Caputo, Hongwan Liu, Siddharth Mishra-Sharma,  and Joshua T. Ruderman, “Dark Photon Oscillations in Our Inhomogeneous Universe,” Phys. Rev. Lett. 125, 221303 (2020), arXiv:2002.05165 [astro-ph.CO] .
  19. Samuel J. Witte, Salvador Rosauro-Alcaraz, Samuel D. McDermott,  and Vivian Poulin, “Dark photon dark matter in the presence of inhomogeneous structure,” JHEP 06, 132 (2020), arXiv:2003.13698 [astro-ph.CO] .
  20. Prakash Gaikwad, Raghunathan Srianand, Martin G. Haehnelt,  and Tirthankar Roy Choudhury, “A consistent and robust measurement of the thermal state of the IGM at 2 ≤\leq≤ z ≤\leq≤ 4 from a large sample of  Ly α𝛼\alphaitalic_α forest spectra: evidence for late and rapid He ii reionization,” Mon. Not. Roy. Astron. Soc. 506, 4389–4412 (2021), arXiv:2009.00016 [astro-ph.CO] .
  21. James S. Bolton, Andrea Caputo, Hongwan Liu,  and Matteo Viel, “Hints of dark photon dark matter from observations and hydrodynamical simulations of the low-redshift Lyman-α𝛼\alphaitalic_α forest,”  (2022), arXiv:2206.13520 [hep-ph] .
  22. Tod R. Lauer et al., “Anomalous Flux in the Cosmic Optical Background Detected with New Horizons Observations,” Astrophys. J. Lett. 927, L8 (2022), arXiv:2202.04273 [astro-ph.GA] .
  23. José Luis Bernal, Gabriela Sato-Polito,  and Marc Kamionkowski, “The cosmic optical background excess, dark matter, and line-intensity mapping,”   (2022), arXiv:2203.11236 [astro-ph.CO] .
  24. Christopher M. Hirata, “Wouthuysen-Field coupling strength and application to high-redshift 21 cm radiation,” Mon. Not. Roy. Astron. Soc. 367, 259–274 (2006), arXiv:astro-ph/0507102 .
  25. Christopher M. Hirata and Nikhil Padmanabhan, ‘‘Cosmological production of H(2) before the formation of the first galaxies,” Mon. Not. Roy. Astron. Soc. 372, 1175–1186 (2006), arXiv:astro-ph/0606437 .
  26. T. P. Stecher and D. A. Williams, “Photodestruction of hydrogen molecules in hi regions,” ApJ 149, L29 (1967).
  27. H. Abgrall, J. Le Bourlot, G. Pineau Des Forets, E. Roueff, D. R. Flower,  and L. Heck, “Photodissociation of h22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT and the h/h22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT transition in interstellar clouds,” A&A 253, 525–536 (1992).
  28. Zoltan Haiman, Martin J. Rees,  and Abraham Loeb, “H22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT cooling of primordial gas triggered by uv irradiation,” ApJ 467, 522 (1996), arXiv:astro-ph/9511126 [astro-ph] .
  29. J. C. Mather, E. S. Cheng, D. A. Cottingham, Jr. Eplee, R. E., D. J. Fixsen, T. Hewagama, R. B. Isaacman, K. A. Jensen, S. S. Meyer, P. D. Noerdlinger, S. M. Read, L. P. Rosen, R. A. Shafer, E. L. Wright, C. L. Bennett, N. W. Boggess, M. G. Hauser, T. Kelsall, Jr. Moseley, S. H., R. F. Silverberg, G. F. Smoot, R. Weiss,  and D. T. Wilkinson, “Measurement of the Cosmic Microwave Background Spectrum by the COBE FIRAS Instrument,” ApJ 420, 439 (1994).
  30. D. J. Fixsen, E. S. Cheng, J. M. Gales, J. C. Mather, R. A. Shafer,  and E. L. Wright, “The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data Set,” ApJ 473, 576 (1996), arXiv:astro-ph/9605054 [astro-ph] .
  31. D. J. Fixsen, A. Kogut, S. Levin, M. Limon, P. Lubin, P. Mirel, M. Seiffert, J. Singal, E. Wollack, T. Villela,  and C. A. Wuensche, “ARCADE 2 Measurement of the Absolute Sky Brightness at 3-90 GHz,” ApJ 734, 5 (2011), arXiv:0901.0555 [astro-ph.CO] .
  32. M. Seiffert, D. J. Fixsen, A. Kogut, S. M. Levin, M. Limon, P. M. Lubin, P. Mirel, J. Singal, T. Villela, E. Wollack,  and C. A. Wuensche, “Interpretation of the ARCADE 2 Absolute Sky Brightness Measurement,” ApJ 734, 6 (2011).
  33. A. Kogut, D. J. Fixsen, D. T. Chuss, J. Dotson, E. Dwek, M. Halpern, G. F. Hinshaw, S. M. Meyer, S. H. Moseley, M. D. Seiffert, D. N. Spergel,  and E. J. Wollack, “The Primordial Inflation Explorer (PIXIE): a nulling polarimeter for cosmic microwave background observations,” JCAP 2011, 025 (2011), arXiv:1105.2044 [astro-ph.CO] .
  34. J. Chluba et al., “New horizons in cosmology with spectral distortions of the cosmic microwave background,” Exper. Astron. 51, 1515–1554 (2021), arXiv:1909.01593 [astro-ph.CO] .
  35. A. Kogut, M. H. Abitbol, J. Chluba, J. Delabrouille, D. Fixsen, J. C. Hill, S. P. Patil,  and A. Rotti, “CMB Spectral Distortions: Status and Prospects,”  (2019), arXiv:1907.13195 [astro-ph.CO] .
  36. B. Maffei et al., “BISOU: A balloon project to measure the CMB spectral distortions,” in 16th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories (2021) arXiv:2111.00246 [astro-ph.IM] .
  37. Clarence L. Chang et al., “Snowmass2021 Cosmic Frontier: Cosmic Microwave Background Measurements White Paper,”   (2022), arXiv:2203.07638 [astro-ph.CO] .
  38. A. F. Illarionov and R. A. Siuniaev, “Comptonization, characteristic radiation spectra, and thermal balance of low-density plasma,” Soviet Astronomy 18, 413–419 (1975).
  39. Ya. B. Zeldovich and R. A. Sunyaev, “The Interaction of Matter and Radiation in a Hot-Model Universe,” Astrophysics and Space Science 4, 301–316 (1969).
  40. Jens Chluba, “Future Steps in Cosmology using Spectral Distortions of the Cosmic Microwave Background,” Proc. Int. Sch. Phys. Fermi 200, 265–309 (2020), arXiv:1806.02915 [astro-ph.CO] .
  41. Jens Chluba, “Which spectral distortions does ΛΛ\Lambdaroman_ΛCDM actually predict?” Mon. Not. Roy. Astron. Soc. 460, 227–239 (2016), arXiv:1603.02496 [astro-ph.CO] .
  42. G. B. Rybicki and I. P. dell’Antonio, “Spectral Distortions in the CMB from Recombination.” in Observational Cosmology, Astronomical Society of the Pacific Conference Series, Vol. 51, edited by Guido L. Chincarini, Angela Iovino, Tommaso Maccacaro,  and Dario Maccagni (1993) p. 548.
  43. J. A. Rubino-Martin, J. Chluba,  and R. A. Sunyaev, “Lines in the Cosmic Microwave Background Spectrum from the Epoch of Cosmological Hydrogen Recombination,” Mon. Not. Roy. Astron. Soc. 371, 1939–1952 (2006), arXiv:astro-ph/0607373 .
  44. Jens Chluba, J. A. Rubino-Martin,  and R. A. Sunyaev, “Cosmological hydrogen recombination: Populations of the high level sub-states,” Mon. Not. Roy. Astron. Soc. 374, 1310–1320 (2007), arXiv:astro-ph/0608242 .
  45. Yacine Ali-Haïmoud, Jens Chluba,  and Marc Kamionkowski, “Constraints on Dark Matter Interactions with Standard Model Particles from Cosmic Microwave Background Spectral Distortions,” Phys. Rev. Lett. 115, 071304 (2015), arXiv:1506.04745 [astro-ph.CO] .
  46. Boris Bolliet, Jens Chluba,  and Richard Battye, “Spectral distortion constraints on photon injection from low-mass decaying particles,” Mon. Not. Roy. Astron. Soc. 507, 3148–3178 (2021), arXiv:2012.07292 [astro-ph.CO] .
  47. Jens Chluba, “Green’s function of the cosmological thermalization problem,” Mon. Not. Roy. Astron. Soc. 434, 352 (2013), arXiv:1304.6120 [astro-ph.CO] .
  48. Jens Chluba, “Green’s function of the cosmological thermalization problem – II. Effect of photon injection and constraints,” Mon. Not. Roy. Astron. Soc. 454, 4182–4196 (2015), arXiv:1506.06582 [astro-ph.CO] .
  49. Sandeep Kumar Acharya and Rishi Khatri, “Rich structure of non-thermal relativistic CMB spectral distortions from high energy particle cascades at redshifts z≲2×105less-than-or-similar-to𝑧2superscript105z\lesssim 2\times 10^{5}italic_z ≲ 2 × 10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” Phys. Rev. D 99, 043520 (2019a), arXiv:1808.02897 [astro-ph.CO] .
  50. Jennifer A. Adams, Subir Sarkar,  and D.W. Sciama, “CMB anisotropy in the decaying neutrino cosmology,” Mon. Not. Roy. Astron. Soc. 301, 210–214 (1998), arXiv:astro-ph/9805108 .
  51. Xue-Lei Chen and Marc Kamionkowski, “Particle decays during the cosmic dark ages,” Phys. Rev. D 70, 043502 (2004), arXiv:astro-ph/0310473 .
  52. Nikhil Padmanabhan and Douglas P. Finkbeiner, “Detecting dark matter annihilation with CMB polarization: Signatures and experimental prospects,” Phys. Rev. D 72, 023508 (2005), arXiv:astro-ph/0503486 .
  53. Le Zhang, Xuelei Chen, Marc Kamionkowski, Zong-guo Si,  and Zheng Zheng, “Constraints on radiative dark-matter decay from the cosmic microwave background,” Phys. Rev. D 76, 061301 (2007), arXiv:0704.2444 [astro-ph] .
  54. Sandeep Kumar Acharya and Rishi Khatri, “CMB anisotropy and BBN constraints on pre-recombination decay of dark matter to visible particles,” JCAP 12, 046 (2019b), arXiv:1910.06272 [astro-ph.CO] .
  55. Junsong Cang, Yu Gao,  and Yin-Zhe Ma, “Probing dark matter with future CMB measurements,” Phys. Rev. D 102, 103005 (2020), arXiv:2002.03380 [astro-ph.CO] .
  56. Silvia Galli, Fabio Iocco, Gianfranco Bertone,  and Alessandro Melchiorri, “CMB constraints on Dark Matter models with large annihilation cross-section,” Phys. Rev. D 80, 023505 (2009), arXiv:0905.0003 [astro-ph.CO] .
  57. Junji Hisano, Masahiro Kawasaki, Kazunori Kohri, Takeo Moroi, Kazunori Nakayama,  and Toyokazu Sekiguchi, “Cosmological constraints on dark matter models with velocity-dependent annihilation cross section,” Phys. Rev. D 83, 123511 (2011), arXiv:1102.4658 [hep-ph] .
  58. Gert Hutsi, Jens Chluba, Andi Hektor,  and Martti Raidal, “WMAP7 and future CMB constraints on annihilating dark matter: implications on GeV-scale WIMPs,” Astron. Astrophys. 535, A26 (2011), arXiv:1103.2766 [astro-ph.CO] .
  59. Silvia Galli, Fabio Iocco, Gianfranco Bertone,  and Alessandro Melchiorri, “Updated CMB constraints on Dark Matter annihilation cross-sections,” Phys. Rev. D 84, 027302 (2011), arXiv:1106.1528 [astro-ph.CO] .
  60. Douglas P. Finkbeiner, Silvia Galli, Tongyan Lin,  and Tracy R. Slatyer, “Searching for dark matter in the CMB: A compact parametrization of energy injection from new physics,” Phys. Rev. D 85, 043522 (2012), arXiv:1109.6322 [astro-ph.CO] .
  61. Tracy R. Slatyer, “Energy Injection And Absorption In The Cosmic Dark Ages,” Phys. Rev. D 87, 123513 (2013), arXiv:1211.0283 [astro-ph.CO] .
  62. Silvia Galli, Tracy R. Slatyer, Marcos Valdes,  and Fabio Iocco, “Systematic Uncertainties In Constraining Dark Matter Annihilation From The Cosmic Microwave Background,” Phys. Rev. D 88, 063502 (2013), arXiv:1306.0563 [astro-ph.CO] .
  63. Mathew S. Madhavacheril, Neelima Sehgal,  and Tracy R. Slatyer, “Current Dark Matter Annihilation Constraints from CMB and Low-Redshift Data,” Phys. Rev. D 89, 103508 (2014), arXiv:1310.3815 [astro-ph.CO] .
  64. Tracy R. Slatyer, “Indirect Dark Matter Signatures in the Cosmic Dark Ages II. Ionization, Heating and Photon Production from Arbitrary Energy Injections,” Phys. Rev. D93, 023521 (2016b), arXiv:1506.03812 [astro-ph.CO] .
  65. Hongwan Liu, Wenzer Qin, Gregory W. Ridgway,  and Tracy R. Slatyer, “Exotic energy injection in the early universe I: a novel treatment for low-energy electrons and photons,”   (2023), arXiv:2303.07366 [astro-ph.CO] .
  66. Hongwan Liu, Gregory W. Ridgway,  and Tracy R. Slatyer, “Code package for calculating modified cosmic ionization and thermal histories with dark matter and other exotic energy injections,” Phys. Rev. D 101, 023530 (2020), arXiv:1904.09296 [astro-ph.CO] .
  67. Alan Kogut, Jens Chluba, Dale J. Fixsen, Stephan Meyer,  and David Spergel, “The Primordial Inflation Explorer (PIXIE),” in Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9904, edited by Howard A. MacEwen, Giovanni G. Fazio, Makenzie Lystrup, Natalie Batalha, Nicholas Siegler,  and Edward C. Tong (2016) p. 99040W.
  68. Federico Bianchini and Giulio Fabbian, “CMB spectral distortions revisited: A new take on μ𝜇\muitalic_μ distortions and primordial non-Gaussianities from FIRAS data,” Phys. Rev. D 106, 063527 (2022), arXiv:2206.02762 [astro-ph.CO] .
  69. Peng-Jie Zhang, Ue-Li Pen,  and Hy Trac, “The Intergalactic medium temperature and Compton y parameter,” Mon. Not. Roy. Astron. Soc. 355, 451 (2004), arXiv:astro-ph/0402115 .
  70. J. Colin Hill, Nick Battaglia, Jens Chluba, Simone Ferraro, Emmanuel Schaan,  and David N. Spergel, “Taking the Universe’s Temperature with Spectral Distortions of the Cosmic Microwave Background,” Phys. Rev. Lett. 115, 261301 (2015), arXiv:1507.01583 [astro-ph.CO] .
  71. G. De Zotti, M. Negrello, G. Castex, A. Lapi,  and M. Bonato, “Another look at distortions of the Cosmic Microwave Background spectrum,” JCAP 03, 047 (2016), arXiv:1512.04816 [astro-ph.CO] .
  72. J. Chluba and R. A. Sunyaev, “The evolution of CMB spectral distortions in the early Universe,” Mon. Not. Roy. Astron. Soc. 419, 1294–1314 (2012), arXiv:1109.6552 [astro-ph.CO] .
  73. Rishi Khatri and Rashid A. Sunyaev, “Beyond y and \mu: the shape of the CMB spectral distortions in the intermediate epoch, 1.5x10^4 <<< z <<< 2x10^5,” JCAP 09, 016 (2012), arXiv:1207.6654 [astro-ph.CO] .
  74. Wan Yan Wong, Sara Seager,  and Douglas Scott, “Spectral distortions to the cosmic microwave background from the recombination of hydrogen and helium,” Mon. Not. Roy. Astron. Soc. 367, 1666–1676 (2006), arXiv:astro-ph/0510634 .
  75. J. A. Rubino-Martin, J. Chluba,  and R. A. Sunyaev, “Lines in the cosmic microwave background spectrum from the epoch of cosmological helium recombination,” Astron. Astrophys. 485, 377 (2008), arXiv:0711.0594 [astro-ph] .
  76. Marco Cirelli, Gennaro Corcella, Andi Hektor, Gert Hutsi, Mario Kadastik, Paolo Panci, Martti Raidal, Filippo Sala,  and Alessandro Strumia, “PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection,” JCAP 03, 051 (2011), [Erratum: JCAP 10, E01 (2012)], arXiv:1012.4515 [hep-ph] .
  77. N. Aghanim et al. (Planck), “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  78. Sara Seager, Dimitar D. Sasselov,  and Douglas Scott, “How exactly did the universe become neutral?” Astrophys. J. Suppl. 128, 407–430 (2000), arXiv:astro-ph/9912182 [astro-ph] .
  79. S. Seager, D. D. Sasselov,  and D. Scott, “A new calculation of the recombination epoch,” The Astrophysical Journal 523, L1–L5 (1999).
  80. A. Ferrara, M. Valdés, N. Yoshida,  and C. Evoli, “Energy deposition by weakly interacting massive particles: a comprehensive study,” Monthly Notices of the Royal Astronomical Society 422, 420–433 (2012), http://oup.prod.sis.lan/mnras/article-pdf/422/1/420/18597009/mnras0422-0420.pdf .
  81. Davide Cadamuro and Javier Redondo, “Cosmological bounds on pseudo Nambu-Goldstone bosons,” JCAP 02, 032 (2012), arXiv:1110.2895 [hep-ph] .
  82. Digvijay Wadekar and Zihui Wang, ‘‘Strong constraints on decay and annihilation of dark matter from heating of gas-rich dwarf galaxies,”   (2021), arXiv:2111.08025 [hep-ph] .
  83. Ciaran O’Hare, “cajohare/axionlimits: Axionlimits,” https://cajohare.github.io/AxionLimits/ (2020).
  84. Kazunori Nakayama and Wen Yin, “Anisotropic cosmic optical background bound for decaying dark matter in light of the LORRI anomaly,” Phys. Rev. D 106, 103505 (2022), arXiv:2205.01079 [hep-ph] .
  85. N. Aghanim et al. (Planck), “Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters,” Astron. Astrophys. 594, A11 (2016), arXiv:1507.02704 [astro-ph.CO] .
  86. Boris Bolliet and Jens Chluba, private communication (2023).
  87. Kevin Langhoff, Nadav Joseph Outmezguine,  and Nicholas L. Rodd, “The Irreducible Axion Background,”   (2022), arXiv:2209.06216 [hep-ph] .
  88. Francesco Capozzi, Ricardo Z. Ferreira, Laura Lopez-Honorez,  and Olga Mena, “CMB and Lyman-α𝛼\alphaitalic_α constraints on dark matter decays to photons,”   (2023), arXiv:2303.07426 [astro-ph.CO] .
  89. Thomas Kluyver et al., “Jupyter notebooks - a publishing format for reproducible computational workflows,” in ELPUB (2016).
  90. John D. Hunter, “Matplotlib: A 2D Graphics Environment,” Comput. Sci. Eng. 9, 90–95 (2007).
  91. Charles R. Harris et al., “Array programming with NumPy,” Nature 585, 357–362 (2020), arXiv:2006.10256 [cs.MS] .
  92. Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt,  and SciPy 1. 0 Contributors, “SciPy 1.0: fundamental algorithms for scientific computing in Python,” Nature Methods 17, 261–272 (2020), arXiv:1907.10121 [cs.MS] .
  93. Casper O. da Costa-Luis, “‘tqdm‘: A fast, extensible progress meter for python and cli,” Journal of Open Source Software 4, 1277 (2019).
  94. Ankit Rohatgi, “Webplotdigitizer: Version 4.6,”  (2022).
  95. Roland Svensson and Andrzej Zdziarski, “Photon-Photon Scattering of Gamma Rays at Cosmological Distances,” ApJ 349, 415 (1990).
  96. Steven R. Furlanetto and Samuel Johnson Stoever, “Secondary ionization and heating by fast electrons,” Monthly Notices of the Royal Astronomical Society 404, 1869–1878 (2010), arXiv:0910.4410 [astro-ph.CO] .
Citations (15)

Summary

We haven't generated a summary for this paper yet.