Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey of Graph Prompting Methods: Techniques, Applications, and Challenges (2303.07275v2)

Published 13 Mar 2023 in cs.LG, cs.AI, and cs.SI

Abstract: The recent "pre-train, prompt, predict training" paradigm has gained popularity as a way to learn generalizable models with limited labeled data. The approach involves using a pre-trained model and a prompting function that applies a template to input samples, adding indicative context and reformulating target tasks as the pre-training task. However, the design of prompts could be a challenging and time-consuming process in complex tasks. The limitation can be addressed by using graph data, as graphs serve as structured knowledge repositories by explicitly modeling the interaction between entities. In this survey, we review prompting methods from the graph perspective, where prompting functions are augmented with graph knowledge. In particular, we introduce the basic concepts of graph prompt learning, organize the existing work of designing graph prompting functions, and describe their applications and future challenges. This survey will bridge the gap between graphs and prompt design to facilitate future methodology development.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com