Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An unconditionally stable space-time isogeometric method for the acoustic wave equation (2303.07268v6)

Published 13 Mar 2023 in math.NA and cs.NA

Abstract: We study space--time isogeometric discretizations of the linear acoustic wave equation that use splines of arbitrary degree p, both in space and time. We propose a space--time variational formulation that is obtained by adding a non-consistent penalty term of order 2p+2 to the bilinear form coming from integration by parts. This formulation, when discretized with tensor-product spline spaces with maximal regularity in time, is unconditionally stable: the mesh size in time is not constrained by the mesh size in space. We give extensive numerical evidence for the good stability, approximation, dissipation and dispersion properties of the stabilized isogeometric formulation, comparing against stabilized finite element schemes, for a range of wave propagation problems with constant and variable wave speed.

Citations (4)

Summary

We haven't generated a summary for this paper yet.