Papers
Topics
Authors
Recent
Search
2000 character limit reached

Pretrained ViTs Yield Versatile Representations For Medical Images

Published 13 Mar 2023 in cs.CV | (2303.07034v3)

Abstract: Convolutional Neural Networks (CNNs) have reigned for a decade as the de facto approach to automated medical image diagnosis, pushing the state-of-the-art in classification, detection and segmentation tasks. Over the last years, vision transformers (ViTs) have appeared as a competitive alternative to CNNs, yielding impressive levels of performance in the natural image domain, while possessing several interesting properties that could prove beneficial for medical imaging tasks. In this work, we explore the benefits and drawbacks of transformer-based models for medical image classification. We conduct a series of experiments on several standard 2D medical image benchmark datasets and tasks. Our findings show that, while CNNs perform better if trained from scratch, off-the-shelf vision transformers can perform on par with CNNs when pretrained on ImageNet, both in a supervised and self-supervised setting, rendering them as a viable alternative to CNNs.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.