Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spacecraft Anomaly Detection with Attention Temporal Convolution Network (2303.06879v1)

Published 13 Mar 2023 in cs.LG and cs.CV

Abstract: Spacecraft faces various situations when carrying out exploration missions in complex space, thus monitoring the anomaly status of spacecraft is crucial to the development of \textcolor{blue}{the} aerospace industry. The time series telemetry data generated by on-orbit spacecraft \textcolor{blue}{contains} important information about the status of spacecraft. However, traditional domain knowledge-based spacecraft anomaly detection methods are not effective due to high dimensionality and complex correlation among variables. In this work, we propose an anomaly detection framework for spacecraft multivariate time-series data based on temporal convolution networks (TCNs). First, we employ dynamic graph attention to model the complex correlation among variables and time series. Second, temporal convolution networks with parallel processing ability are used to extract multidimensional \textcolor{blue}{features} for \textcolor{blue}{the} downstream prediction task. Finally, many potential anomalies are detected by the best threshold. Experiments on real NASA SMAP/MSL spacecraft datasets show the superiority of our proposed model with respect to state-of-the-art methods.

Citations (21)

Summary

We haven't generated a summary for this paper yet.