Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 TPS
Gemini 2.5 Pro 51 TPS Pro
GPT-5 Medium 27 TPS
GPT-5 High 30 TPS Pro
GPT-4o 87 TPS
GPT OSS 120B 379 TPS Pro
Kimi K2 185 TPS Pro
2000 character limit reached

Knowledge-integrated AutoEncoder Model (2303.06721v1)

Published 12 Mar 2023 in cs.LG and cs.HC

Abstract: Data encoding is a common and central operation in most data analysis tasks. The performance of other models, downstream in the computational process, highly depends on the quality of data encoding. One of the most powerful ways to encode data is using the neural network AutoEncoder (AE) architecture. However, the developers of AE are not able to easily influence the produced embedding space, as it is usually treated as a \textit{black box} technique, which makes it uncontrollable and not necessarily has desired properties for downstream tasks. In this paper, we introduce a novel approach for developing AE models that can integrate external knowledge sources into the learning process, possibly leading to more accurate results. The proposed \methodNamefull{} (\methodName{}) model is able to leverage domain-specific information to make sure the desired distance and neighborhood properties between samples are preservative in the embedding space. The proposed model is evaluated on three large-scale datasets from three different scientific fields and is compared to nine existing encoding models. The results demonstrate that the \methodName{} model effectively captures the underlying structures and relationships between the input data and external knowledge, meaning it generates a more useful representation. This leads to outperforming the rest of the models in terms of reconstruction accuracy.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube