Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extending global-local view alignment for self-supervised learning with remote sensing imagery (2303.06670v2)

Published 12 Mar 2023 in cs.CV

Abstract: Since large number of high-quality remote sensing images are readily accessible, exploiting the corpus of images with less manual annotation draws increasing attention. Self-supervised models acquire general feature representations by formulating a pretext task that generates pseudo-labels for massive unlabeled data to provide supervision for training. While prior studies have explored multiple self-supervised learning techniques in remote sensing domain, pretext tasks based on local-global view alignment remain underexplored, despite achieving state-of-the-art results on natural imagery. Inspired by DINO, which employs an effective representation learning structure with knowledge distillation based on global-local view alignment, we formulate two pretext tasks for self-supervised learning on remote sensing imagery (SSLRS). Using these tasks, we explore the effectiveness of positive temporal contrast as well as multi-sized views on SSLRS. We extend DINO and propose DINO-MC which uses local views of various sized crops instead of a single fixed size in order to alleviate the limited variation in object size observed in remote sensing imagery. Our experiments demonstrate that even when pre-trained on only 10% of the dataset, DINO-MC performs on par or better than existing state-of-the-art SSLRS methods on multiple remote sensing tasks, while using less computational resources. All codes, models, and results are released at https://github.com/WennyXY/DINO-MC.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub