Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CoT-MISR:Marrying Convolution and Transformer for Multi-Image Super-Resolution (2303.06548v1)

Published 12 Mar 2023 in cs.CV and eess.IV

Abstract: As a method of image restoration, image super-resolution has been extensively studied at first. How to transform a low-resolution image to restore its high-resolution image information is a problem that researchers have been exploring. In the early physical transformation methods, the high-resolution pictures generated by these methods always have a serious problem of missing information, and the edges and details can not be well recovered. With the development of hardware technology and mathematics, people begin to use in-depth learning methods for image super-resolution tasks, from direct in-depth learning models, residual channel attention networks, bi-directional suppression networks, to tr networks with transformer network modules, which have gradually achieved good results. In the research of multi-graph super-resolution, thanks to the establishment of multi-graph super-resolution dataset, we have experienced the evolution from convolution model to transformer model, and the quality of super-resolution has been continuously improved. However, we find that neither pure convolution nor pure tr network can make good use of low-resolution image information. Based on this, we propose a new end-to-end CoT-MISR network. CoT-MISR network makes up for local and global information by using the advantages of convolution and tr. The validation of dataset under equal parameters shows that our CoT-MISR network has reached the optimal score index.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mingming Xiu (1 paper)
  2. Yang Nie (2 papers)
  3. Qing Song (23 papers)
  4. Chun Liu (122 papers)

Summary

We haven't generated a summary for this paper yet.