Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lossless Point Cloud Geometry and Attribute Compression Using a Learned Conditional Probability Model (2303.06519v2)

Published 11 Mar 2023 in eess.IV and cs.LG

Abstract: In recent years, we have witnessed the presence of point cloud data in many aspects of our life, from immersive media, autonomous driving to healthcare, although at the cost of a tremendous amount of data. In this paper, we present an efficient lossless point cloud compression method that uses sparse tensor-based deep neural networks to learn point cloud geometry and color probability distributions. Our method represents a point cloud with both occupancy feature and three attribute features at different bit depths in a unified sparse representation. This allows us to efficiently exploit feature-wise and point-wise dependencies within point clouds using a sparse tensor-based neural network and thus build an accurate auto-regressive context model for an arithmetic coder. To the best of our knowledge, this is the first learning-based lossless point cloud geometry and attribute compression approach. Compared with the-state-of-the-art lossless point cloud compression method from Moving Picture Experts Group (MPEG), our method achieves 22.6% reduction in total bitrate on a diverse set of test point clouds while having 49.0% and 18.3% rate reduction on geometry and color attribute component, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and A. Tabatabai, “An overview of ongoing point cloud compression standardization activities: video-based (V-PCC) and geometry-based (G-PCC),” APSIPA Transactions on Signal and Information Processing, vol. 9, 2020.
  2. S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou, R. A. Cohen, M. Krivokuca, S. Lasserre, Z. Li, J. Llach, K. Mammou, R. Mekuria, O. Nakagami, E. Siahaan, A. Tabatabai, A. M. Tourapis, and V. Zakharchenko, “Emerging MPEG Standards for Point Cloud Compression,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, pp. 1–1, 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8571288/
  3. E. S. Jang, M. Preda, K. Mammou, A. M. Tourapis, J. Kim, D. B. Graziosi, S. Rhyu, and M. Budagavi, “Video-Based Point-Cloud-Compression Standard in MPEG: From Evidence Collection to Committee Draft [Standards in a Nutshell],” IEEE Signal Processing Magazine, vol. 36, no. 3, pp. 118–123, May 2019.
  4. H. Liu, H. Yuan, Q. Liu, J. Hou, and J. Liu, “A comprehensive study and comparison of core technologies for mpeg 3-d point cloud compression,” IEEE Transactions on Broadcasting, vol. 66, no. 3, pp. 701–717, 2020.
  5. R. L. De Queiroz and P. A. Chou, “Compression of 3d point clouds using a region-adaptive hierarchical transform,” IEEE Transactions on Image Processing, vol. 25, no. 8, pp. 3947–3956, 2016.
  6. C. Choy, J. Gwak, and S. Savarese, “4d spatio-temporal convnets: Minkowski convolutional neural networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3075–3084.
  7. R. Schnabel and R. Klein, “Octree-based point-cloud compression.” Spbg, vol. 6, pp. 111–120, 2006.
  8. D. C. Garcia and R. L. de Queiroz, “Context-based octree coding for point-cloud video,” in 2017 IEEE International Conference on Image Processing (ICIP), Sep. 2017, pp. 1412–1416, iSSN: 2381-8549.
  9. D. C. Garcia and R. L. d. Queiroz, “Intra-Frame Context-Based Octree Coding for Point-Cloud Geometry,” in 2018 25th IEEE International Conference on Image Processing (ICIP), Oct. 2018, pp. 1807–1811.
  10. D. C. Garcia, T. A. Fonseca, R. U. Ferreira, and R. L. de Queiroz, “Geometry Coding for Dynamic Voxelized Point Clouds Using Octrees and Multiple Contexts,” IEEE Transactions on Image Processing, vol. 29, pp. 313–322, 2019.
  11. S. Biswas, J. Liu, K. Wong, S. Wang, and R. Urtasun, “Muscle: Multi sweep compression of lidar using deep entropy models,” Advances in Neural Information Processing Systems, vol. 33, 2020.
  12. L. Huang, S. Wang, K. Wong, J. Liu, and R. Urtasun, “OctSqueeze: Octree-Structured Entropy Model for LiDAR Compression,” arXiv:2005.07178 [cs, eess], May 2020. [Online]. Available: http://arxiv.org/abs/2005.07178
  13. A. Dricot and J. Ascenso, “Adaptive multi-level triangle soup for geometry-based point cloud coding,” in 2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP).   IEEE, 2019, pp. 1–6.
  14. “Neighbour-dependent entropy coding of occupancy patterns,” in TMC3, ISO/IEC JTC1/SC29/WG11 input document m42238, Gwangju, Korea, January 2018.
  15. “Intra mode for geometry coding,” in TMC3, ISO/IEC JTC1/SC29/WG11 input document m43600, Ljubljana, Slovenia, July 2018.
  16. “Planar mode in octree-based geometry coding,” in TISO/IEC JTC1/SC29/WG11 input document m48906, Gothenburg, Sweden, July 2019.
  17. “An improvement of the planar coding mode,” in ISO/IEC JTC1/SC29/WG11 input document m50642, Geneva, CH, Oct 2019.
  18. E. C. Kaya and I. Tabus, “Neural network modeling of probabilities for coding the octree representation of point clouds,” in 2021 IEEE 23rd International Workshop on Multimedia Signal Processing (MMSP).   IEEE, 2021, pp. 1–6.
  19. C. Fu, G. Li, R. Song, W. Gao, and S. Liu, “Octattention: Octree-based large-scale contexts model for point cloud compression,” arXiv preprint arXiv:2202.06028, 2022.
  20. L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image compression with compressive autoencoders,” arXiv preprint arXiv:1703.00395, 2017.
  21. M. Quach, G. Valenzise, and F. Dufaux, “Learning Convolutional Transforms for Lossy Point Cloud Geometry Compression,” in 2019 IEEE International Conference on Image Processing (ICIP), Sep. 2019, pp. 4320–4324, iSSN: 1522-4880.
  22. W. Yan, S. Liu, T. H. Li, Z. Li, G. Li et al., “Deep autoencoder-based lossy geometry compression for point clouds,” arXiv preprint arXiv:1905.03691, 2019.
  23. J. Wang, D. Ding, Z. Li, and Z. Ma, “Multiscale point cloud geometry compression,” in 2021 Data Compression Conference (DCC).   IEEE, 2021, pp. 73–82.
  24. J. Wang, D. Ding, Z. Li, X. Feng, C. Cao, and Z. Ma, “Sparse tensor-based multiscale representation for point cloud geometry compression,” arXiv preprint arXiv:2111.10633, 2021.
  25. M. Quach, G. Valenzise, and F. Dufaux, “Improved deep point cloud geometry compression,” in 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), 2020, pp. 1–6.
  26. D. T. Nguyen, M. Quach, G. Valenzise, and P. Duhamel, “Learning-based lossless compression of 3d point cloud geometry,” in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2021, pp. 4220–4224.
  27. ——, “Lossless coding of point cloud geometry using a deep generative model,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 12, pp. 4617–4629, 2021.
  28. ——, “Multiscale deep context modeling for lossless point cloud geometry compression,” in 2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW).   IEEE, 2021, pp. 1–6.
  29. D. T. Nguyen and A. Kaup, “Learning-based lossless point cloud geometry coding using sparse representations,” arXiv preprint arXiv:2204.05043, 2022.
  30. C. Zhang, D. Florêncio, and C. Loop, “Point cloud attribute compression with graph transform,” in 2014 IEEE International Conference on Image Processing (ICIP), 2014, pp. 2066–2070.
  31. R. L. de Queiroz and P. A. Chou, “Compression of 3d point clouds using a region-adaptive hierarchical transform,” IEEE Transactions on Image Processing, vol. 25, no. 8, pp. 3947–3956, 2016.
  32. Y. Xu, W. Hu, S. Wang, X. Zhang, S. Wang, S. Ma, and W. Gao, “Cluster-based point cloud coding with normal weighted graph fourier transform,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 1753–1757.
  33. Y. Huang, J. Peng, C.-C. J. Kuo, and M. Gopi, “A generic scheme for progressive point cloud coding,” IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 2, pp. 440–453, 2008.
  34. S. Gu, J. Hou, H. Zeng, H. Yuan, and K.-K. Ma, “3d point cloud attribute compression using geometry-guided sparse representation,” IEEE Transactions on Image Processing, vol. 29, pp. 796–808, 2019.
  35. M. Group, “Mpeg tmc13 reference software,” (accessed May 02, 2022). [Online]. Available: https://github.com/MPEGGroup/mpeg-pcc-tmc13
  36. M. K. T. A. K. J. R. F. V. V. S. Y, “Proposal for improved lossy compression in tmc1,” in ISO/IEC JTC1/SC29/WG11 M42640, 2018.
  37. M. 3DG, “Pcc test model category 3 v0.” in ISO/IEC JTC1/SC29/ WG11 N17249, 2017.
  38. S. Gu, J. Hou, H. Zeng, and H. Yuan, “3d point cloud attribute compression via graph prediction,” IEEE Signal Processing Letters, vol. 27, pp. 176–180, 2020.
  39. H. Liu, H. Yuan, Q. Liu, J. Hou, H. Zeng, and S. Kwong, “A hybrid compression framework for color attributes of static 3d point clouds,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 3, pp. 1564–1577, 2021.
  40. R. Mekuria, K. Blom, and P. Cesar, “Design, implementation, and evaluation of a point cloud codec for tele-immersive video,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 27, no. 4, pp. 828–842, 2017.
  41. L. Li, Z. Li, S. Liu, and H. Li, “Efficient projected frame padding for video-based point cloud compression,” IEEE Transactions on Multimedia, vol. 23, pp. 2806–2819, 2021.
  42. M. Quach, G. Valenzise, and F. Dufaux, “Folding-based compression of point cloud attributes,” in 2020 IEEE International Conference on Image Processing (ICIP).   IEEE, 2020, pp. 3309–3313.
  43. E. Alexiou, K. Tung, and T. Ebrahimi, “Towards neural network approaches for point cloud compression,” in Applications of Digital Image Processing XLIII, vol. 11510.   SPIE, 2020, pp. 18–37.
  44. X. Sheng, L. Li, D. Liu, Z. Xiong, Z. Li, and F. Wu, “Deep-pcac: An end-to-end deep lossy compression framework for point cloud attributes,” IEEE Transactions on Multimedia, pp. 1–1, 2021.
  45. B. Isik, P. A. Chou, S. J. Hwang, N. Johnston, and G. Toderici, “Lvac: Learned volumetric attribute compression for point clouds using coordinate based networks,” arXiv preprint arXiv:2111.08988, 2021.
  46. J. Wang and Z. Ma, “Sparse tensor-based point cloud attribute compression,” arXiv preprint arXiv:2204.01023, 2022.
  47. Y. Huang, B. Wang, C.-C. J. Kuo, H. Yuan, and J. Peng, “Hierarchical bit-wise differential coding (hbdc) of point cloud attributes,” in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2021, pp. 4215–4219.
  48. Q. Yin, Q. Ren, L. Zhao, W. Wang, and J. Chen, “Lossless point cloud attribute compression with normal-based intra prediction,” in 2021 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB).   IEEE, 2021, pp. 1–5.
  49. F. Song, Y. Shao, W. Gao, H. Wang, and T. Li, “Layer-wise geometry aggregation framework for lossless lidar point cloud compression,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 12, pp. 4603–4616, 2021.
  50. C. E. Shannon, “A mathematical theory of communication,” The Bell system technical journal, vol. 27, no. 3, pp. 379–423, 1948.
  51. “Common test conditions for PCC,” in ISO/IEC JTC1/SC29/WG11 MPEG output document N19324.
  52. A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel Recurrent Neural Networks,” arXiv:1601.06759 [cs], Aug. 2016. [Online]. Available: http://arxiv.org/abs/1601.06759
  53. T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications,” arXiv:1701.05517 [cs, stat], Jan. 2017. [Online]. Available: http://arxiv.org/abs/1701.05517
  54. G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the high efficiency video coding (hevc) standard,” IEEE Transactions on circuits and systems for video technology, vol. 22, no. 12, pp. 1649–1668, 2012.
  55. JVET, “Ycgco-r: Observations and findings,” in ITU-T SG 16 WP3 and ISO/IEC JTC 1/SC 29,20th Meeting, by teleconference, 7 – 16 Oct. 2020.
  56. C. Loop, Q. Cai, S. O. Escolano, and P. A. Chou, “Microsoft voxelized upper bodies - a voxelized point cloud dataset,” in ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document m38673/M72012, May 2016.
  57. E. d’Eon, B. Harrison, T. Myers, and P. A. Chou, “8i Voxelized Full Bodies - A Voxelized Point Cloud Dataset,” in ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document WG11M40059/WG1M74006, Geneva, Jan. 2017.
  58. M. Zuffo, “University of sao paulo point cloud dataset,” (accessed Dec 19, 2020). [Online]. Available: http://uspaulopc.di.ubi.pt
  59. M. 3DG, “Preliminary dataset collection for ai-based point cloud experiments,” in ISO/IEC JTC 1/SC 29/WG 7 N00326, Apr 2022.
  60. A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-rich 3d model repository,” arXiv preprint arXiv:1512.03012, 2015.
  61. J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall, “Semantickitti: A dataset for semantic scene understanding of lidar sequences,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 9297–9307.
  62. F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. V. Gool, “Conditional Probability Models for Deep Image Compression,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.   Salt Lake City, UT: IEEE, Jun. 2018, pp. 4394–4402. [Online]. Available: https://ieeexplore.ieee.org/document/8578560/
  63. L. Theis and M. Bethge, “Generative image modeling using spatial lstms,” in Advances in Neural Information Processing Systems, 2015, pp. 1927–1935.
Citations (24)

Summary

We haven't generated a summary for this paper yet.