Second And Third-Order Structure Functions Of An 'Engineered' Random Field And Emergence Of The Kolmogorov 4/5 And 2/3-Scaling Laws Of Turbulence (2303.06248v1)
Abstract: The 4/5 and 2/3 laws of turbulence can emerge from a theory of 'engineered' random vector fields $\mathcal{X}{i}(x,t) =X{i}(x,t)+\tfrac{\theta}{\sqrt{d(d+2)}} X_{i}(x,t)\psi(x)$ existing within $\mathbf{D}\subset\mathbf{R}{d}$. Here, $X_{i}(x,t)$ is a smooth deterministic vector field obeying a nonlinear PDE for all $(x,t)\in\mathbf{D}\times\mathbf{R}{+}$, and $\theta$ is a small parameter. The field $\psi(x)$ is a regulated and differentiable Gaussian random field with expectation $\mathbb{E}[\psi(x)]=0$, but having an antisymmetric covariance kernel $\mathscr{K}(x,y)=\mathbb{E}[\psi(x)\psi(y)]=f(x,y)K(|x-y|;\lambda)$ with $f(x,y)=-f(y,x)=1,f(x,x)=f(y,y)=0$ and with $K(|x-y|;\lambda)$ a standard stationary symmetric kernel. For $0\le\ell\le \lambda<L$ with $X_{i}(x,t)=X_{i}=(0,0,X)$ and $\theta=1$ then for $d=3$, the third-order structure function is \begin{align} S_{3}[\ell]=\mathbb{E}\left[|\mathcal{X}{i}(x+\ell,t)-\mathcal{X}(x,t)|{3}\right]=-\frac{4}{5}|X{i}|{3}=-\frac{4}{5}X{3}\nonumber \end{align} and $S_{2}[\ell]=CX{2}$. The classical 4/5 and 2/3-scaling laws then emerge if one identifies the random field $\mathcal{X}{i}(x,t)$ with a turbulent fluid flow $\mathcal{U}{i}(x,t)$ or velocity, with mean flow $\mathbb{E}[\mathcal{U}{i}(x,t)]=U{i}(x,t)=U_{i}$ being a trivial solution of Burger's equation. Assuming constant dissipation rate $\epsilon$, small constant viscosity $\nu$, corresponding to high Reynolds number, and the standard energy balance law, then for a range $\eta\le\ell\ll \lambda<L$ \begin{align} S_{3}[\ell]=\mathbb{E}\left[|\mathcal{U}{i}(x+\ell,t)-\mathcal{U}(x,t)|{3}\right]=-\frac{4}{5}\epsilon\ell\nonumber \end{align} where $\eta=(\nu{3/4}\epsilon){-1/4}$. For the second-order structure function, the 2/3-law emerges as $S{2}[\ell]=C\epsilon{2/3}\ell{2/3}$.