Papers
Topics
Authors
Recent
Search
2000 character limit reached

Do we need entire training data for adversarial training?

Published 10 Mar 2023 in cs.CV, cs.AI, and cs.LG | (2303.06241v2)

Abstract: Deep Neural Networks (DNNs) are being used to solve a wide range of problems in many domains including safety-critical domains like self-driving cars and medical imagery. DNNs suffer from vulnerability against adversarial attacks. In the past few years, numerous approaches have been proposed to tackle this problem by training networks using adversarial training. Almost all the approaches generate adversarial examples for the entire training dataset, thus increasing the training time drastically. We show that we can decrease the training time for any adversarial training algorithm by using only a subset of training data for adversarial training. To select the subset, we filter the adversarially-prone samples from the training data. We perform a simple adversarial attack on all training examples to filter this subset. In this attack, we add a small perturbation to each pixel and a few grid lines to the input image. We perform adversarial training on the adversarially-prone subset and mix it with vanilla training performed on the entire dataset. Our results show that when our method-agnostic approach is plugged into FGSM, we achieve a speedup of 3.52x on MNIST and 1.98x on the CIFAR-10 dataset with comparable robust accuracy. We also test our approach on state-of-the-art Free adversarial training and achieve a speedup of 1.2x in training time with a marginal drop in robust accuracy on the ImageNet dataset.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.