Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unconditionally energy stable numerical schemes for the three-dimensional magneto-micropolar equations (2303.06000v2)

Published 10 Mar 2023 in math.NA and cs.NA

Abstract: In this paper we consider unconditionally energy stable numerical schemes for the nonstationary 3D magneto-micropolar equations that describes the microstructure of rigid microelements in electrically conducting fluid flow under some magnetic field. The first scheme is comprised of the Euler semi-implicit discretization in time and conforming finite element/stabilizedfinite element in space. The second one is based on Crank-Nicolson discretization in time and extrapolated treatment of the nonlinear terms such that skew-symmetry properties are retained. We prove that the proposed schemes are unconditionally energy stable. Some error estimates for the velocity field, the magnetic field, the micro-rotation field and the fluid pressure are obtained. Furthermore, we establish some first-order decoupled numerical schemes. Numerical tests are provided to check the theoretical rates and unconditionally energy stable.

Summary

We haven't generated a summary for this paper yet.