Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature Importance: A Closer Look at Shapley Values and LOCO (2303.05981v1)

Published 10 Mar 2023 in stat.ME and stat.ML

Abstract: There is much interest lately in explainability in statistics and machine learning. One aspect of explainability is to quantify the importance of various features (or covariates). Two popular methods for defining variable importance are LOCO (Leave Out COvariates) and Shapley Values. We take a look at the properties of these methods and their advantages and disadvantages. We are particularly interested in the effect of correlation between features which can obscure interpretability. Contrary to some claims, Shapley values do not eliminate feature correlation. We critique the game theoretic axioms for Shapley values and suggest some new axioms. We propose new, more statistically oriented axioms for feature importance and some measures that satisfy these axioms. However, correcting for correlation is a Faustian bargain: removing the effect of correlation creates other forms of bias. Ultimately, we recommend a slightly modified version of LOCO. We briefly consider how to modify Shapley values to better address feature correlation.

Citations (18)

Summary

We haven't generated a summary for this paper yet.