Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Knowledge Distillation from RNN-T Models With Noisy Training Labels Using Full-Sum Loss (2303.05958v1)

Published 10 Mar 2023 in cs.CL, cs.SD, eess.AS, and stat.ML

Abstract: This work studies knowledge distillation (KD) and addresses its constraints for recurrent neural network transducer (RNN-T) models. In hard distillation, a teacher model transcribes large amounts of unlabelled speech to train a student model. Soft distillation is another popular KD method that distills the output logits of the teacher model. Due to the nature of RNN-T alignments, applying soft distillation between RNN-T architectures having different posterior distributions is challenging. In addition, bad teachers having high word-error-rate (WER) reduce the efficacy of KD. We investigate how to effectively distill knowledge from variable quality ASR teachers, which has not been studied before to the best of our knowledge. We show that a sequence-level KD, full-sum distillation, outperforms other distillation methods for RNN-T models, especially for bad teachers. We also propose a variant of full-sum distillation that distills the sequence discriminative knowledge of the teacher leading to further improvement in WER. We conduct experiments on public datasets namely SpeechStew and LibriSpeech, and on in-house production data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mohammad Zeineldeen (16 papers)
  2. Kartik Audhkhasi (22 papers)
  3. Murali Karthick Baskar (15 papers)
  4. Bhuvana Ramabhadran (47 papers)
Citations (1)