Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonequilibrium diffusion of active particles bound to a semi-flexible polymer network: simulations and fractional Langevin equation (2303.05851v2)

Published 10 Mar 2023 in cond-mat.soft and physics.bio-ph

Abstract: In a viscoelastic environment, the diffusion of a particle becomes non-Markovian due to the memory effect. An open question is to quantitatively explain how self-propulsion particles with directional memory diffuse in such a medium. Based on simulations and analytic theory, we address this issue with active viscoelastic systems where an active particle is connected with multiple semi-flexible filaments. Our Langevin dynamics simulations show that the active cross-linker displays super- and sub-diffusive athermal motion with a time-dependent anomalous exponent $\alpha$. In such viscoelastic feedback, the active particle always has superdiffusion with $\alpha=3/2$ at times shorter than the self-propulsion time ($\tau_A$). At times greater than $\tau_A$, the subdiffusion emerges with $\alpha$ bounded between $1/2$ and $3/4$. Remarkably, the active subdiffusion is reinforced as the active propulsion (Pe) is more vigorous. In the high-Pe limit, the athermal fluctuation in the stiff filament eventually leads to $\alpha=1/2$, which can be misinterpreted with the thermal Rouse motion in a flexible chain. We demonstrate that the motion of active particles cross-linking a network of semi-flexible filaments can be governed by a fractional Langevin equation combined with fractional Gaussian noise and an Ornstein-Uhlenbeck noise. We analytically derive the velocity autocorrelation function and mean-squared displacement of the model, explaining their scaling relations as well as the prefactors. We find that there exist the threshold Pe ($\mathrm{Pe}*$) and cross-over times ($\tau*$ and $\tau\dagger$) above which the active viscoelastic dynamics emerge on the timescales of $\tau* \lesssim t \lesssim \tau\dagger$. Our study may provide a theoretical insight into various nonequilibrium active dynamics in intracellular viscoelastic environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. X.-L. Wu and A. Libchaber, Phys. Rev. Lett. 84, 3017 (2000).
  2. E. Lauga and R. E. Goldstein, Phys. Today 65, 30 (2012).
  3. A. Ghosh and P. Fischer, Nano Lett. 9, 2243 (2009).
  4. S. Saad and G. Natale, Soft Matter 15, 9909 (2019).
  5. Y. Kafri and R. A. da Silveira, Phys. Rev. Lett. 100, 238101 (2008).
  6. J. Tailleur and M. E. Cates, Phys. Rev. Lett. 100, 218103 (2008).
  7. N. Samanta and R. Chakrabarti, J. Phys. A: Math. Theor. 49, 195601 (2016).
  8. E. O. Budrene and H. C. Berg, Nature 376, 49 (1995).
  9. M. E. Cates and J. Tailleur, Annu. Rev. Condens. Matter Phys. 6, 219 (2015).
  10. T. Bhattacharjee and S. S. Datta, Nat. Commun. 10, 2075 (2019).
  11. C. M. Kjeldbjerg and J. F. Brady, Soft Matter 18, 2757 (2022).
  12. P. Kumar and R. Chakrabarti, PCCP 25, 1937 (2023).
  13. T. D. Pollard and J. A. Cooper, Science 326, 1208 (2009).
  14. C. Wilhelm, Phys. Rev. Lett. 101, 028101 (2008).
  15. L. Stadler and M. Weiss, New J. Phys. 19, 113048 (2017).
  16. R. D. Vale and H. Hotani, J. Cell Biol. 107, 2233 (1988).
  17. R. Bej and R. Haag, J. Am. Chem. Soc. 144, 20137 (2022).
  18. J. F. Marko and E. D. Siggia, Macromolecules 28, 8759 (1995).
  19. A. Ghosh and N. Gov, Biophys. J. 107, 1065 (2014).
  20. A. R. Bausch and K. Kroy, Nat. Phys. 2, 231 (2006).
  21. T. Sakaue and T. Saito, Soft Matter 13, 81 (2017).
  22. D. Panja, J. Stat. Mech: Theory Exp. 2010, P06011 (2010).
  23. T. Saito and T. Sakaue, Phys. Rev. E 92, 012601 (2015).
  24. H. Vandebroek and C. Vanderzande, Phys. Rev. E. 92, 060601 (2015).
  25. Y.-W. Wu and H.-Y. Yu, Soft Matter 14, 9910 (2018).
  26. H. R. Warner, Ind. Eng. Chem. Fundam. 11, 379 (1972).
  27. N. Pottier, Physica A 317, 371 (2003).
  28. A detailed report of this study will be published elsewhere.
  29. B. B. Mandelbrot and J. W. Van Ness, SIAM Review 10, 422 (1968).
Citations (7)

Summary

We haven't generated a summary for this paper yet.