Nonequilibrium diffusion of active particles bound to a semi-flexible polymer network: simulations and fractional Langevin equation (2303.05851v2)
Abstract: In a viscoelastic environment, the diffusion of a particle becomes non-Markovian due to the memory effect. An open question is to quantitatively explain how self-propulsion particles with directional memory diffuse in such a medium. Based on simulations and analytic theory, we address this issue with active viscoelastic systems where an active particle is connected with multiple semi-flexible filaments. Our Langevin dynamics simulations show that the active cross-linker displays super- and sub-diffusive athermal motion with a time-dependent anomalous exponent $\alpha$. In such viscoelastic feedback, the active particle always has superdiffusion with $\alpha=3/2$ at times shorter than the self-propulsion time ($\tau_A$). At times greater than $\tau_A$, the subdiffusion emerges with $\alpha$ bounded between $1/2$ and $3/4$. Remarkably, the active subdiffusion is reinforced as the active propulsion (Pe) is more vigorous. In the high-Pe limit, the athermal fluctuation in the stiff filament eventually leads to $\alpha=1/2$, which can be misinterpreted with the thermal Rouse motion in a flexible chain. We demonstrate that the motion of active particles cross-linking a network of semi-flexible filaments can be governed by a fractional Langevin equation combined with fractional Gaussian noise and an Ornstein-Uhlenbeck noise. We analytically derive the velocity autocorrelation function and mean-squared displacement of the model, explaining their scaling relations as well as the prefactors. We find that there exist the threshold Pe ($\mathrm{Pe}*$) and cross-over times ($\tau*$ and $\tau\dagger$) above which the active viscoelastic dynamics emerge on the timescales of $\tau* \lesssim t \lesssim \tau\dagger$. Our study may provide a theoretical insight into various nonequilibrium active dynamics in intracellular viscoelastic environments.
- X.-L. Wu and A. Libchaber, Phys. Rev. Lett. 84, 3017 (2000).
- E. Lauga and R. E. Goldstein, Phys. Today 65, 30 (2012).
- A. Ghosh and P. Fischer, Nano Lett. 9, 2243 (2009).
- S. Saad and G. Natale, Soft Matter 15, 9909 (2019).
- Y. Kafri and R. A. da Silveira, Phys. Rev. Lett. 100, 238101 (2008).
- J. Tailleur and M. E. Cates, Phys. Rev. Lett. 100, 218103 (2008).
- N. Samanta and R. Chakrabarti, J. Phys. A: Math. Theor. 49, 195601 (2016).
- E. O. Budrene and H. C. Berg, Nature 376, 49 (1995).
- M. E. Cates and J. Tailleur, Annu. Rev. Condens. Matter Phys. 6, 219 (2015).
- T. Bhattacharjee and S. S. Datta, Nat. Commun. 10, 2075 (2019).
- C. M. Kjeldbjerg and J. F. Brady, Soft Matter 18, 2757 (2022).
- P. Kumar and R. Chakrabarti, PCCP 25, 1937 (2023).
- T. D. Pollard and J. A. Cooper, Science 326, 1208 (2009).
- C. Wilhelm, Phys. Rev. Lett. 101, 028101 (2008).
- L. Stadler and M. Weiss, New J. Phys. 19, 113048 (2017).
- R. D. Vale and H. Hotani, J. Cell Biol. 107, 2233 (1988).
- R. Bej and R. Haag, J. Am. Chem. Soc. 144, 20137 (2022).
- J. F. Marko and E. D. Siggia, Macromolecules 28, 8759 (1995).
- A. Ghosh and N. Gov, Biophys. J. 107, 1065 (2014).
- A. R. Bausch and K. Kroy, Nat. Phys. 2, 231 (2006).
- T. Sakaue and T. Saito, Soft Matter 13, 81 (2017).
- D. Panja, J. Stat. Mech: Theory Exp. 2010, P06011 (2010).
- T. Saito and T. Sakaue, Phys. Rev. E 92, 012601 (2015).
- H. Vandebroek and C. Vanderzande, Phys. Rev. E. 92, 060601 (2015).
- Y.-W. Wu and H.-Y. Yu, Soft Matter 14, 9910 (2018).
- H. R. Warner, Ind. Eng. Chem. Fundam. 11, 379 (1972).
- N. Pottier, Physica A 317, 371 (2003).
- A detailed report of this study will be published elsewhere.
- B. B. Mandelbrot and J. W. Van Ness, SIAM Review 10, 422 (1968).