Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training, Architecture, and Prior for Deterministic Uncertainty Methods (2303.05796v2)

Published 10 Mar 2023 in cs.LG

Abstract: Accurate and efficient uncertainty estimation is crucial to build reliable Machine Learning (ML) models capable to provide calibrated uncertainty estimates, generalize and detect Out-Of-Distribution (OOD) datasets. To this end, Deterministic Uncertainty Methods (DUMs) is a promising model family capable to perform uncertainty estimation in a single forward pass. This work investigates important design choices in DUMs: (1) we show that training schemes decoupling the core architecture and the uncertainty head schemes can significantly improve uncertainty performances. (2) we demonstrate that the core architecture expressiveness is crucial for uncertainty performance and that additional architecture constraints to avoid feature collapse can deteriorate the trade-off between OOD generalization and detection. (3) Contrary to other Bayesian models, we show that the prior defined by DUMs do not have a strong effect on the final performances.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Bertrand Charpentier (21 papers)
  2. Chenxiang Zhang (5 papers)
  3. Stephan Günnemann (169 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.