Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring New Topologies for the Theory of Clones (2303.05471v3)

Published 9 Mar 2023 in cs.LO

Abstract: Clones of operations of arity omega (referred to as omega-operations) have been employed by Neumann to represent varieties of infinitary algebras defined by operations of at most arity omega. More recently, clone algebras have been introduced to study clones of functions, including omega-operations, within the framework of one-sorted universal algebra. Additionally, polymorphisms of arity omega, which are omega-operations preserving the relations of a given first-order structure, have recently been used to establish model theory results with applications in the field of complexity of CSP problems. In this paper, we undertake a topological and algebraic study of polymorphisms of arity omega and their corresponding invariant relations. Given a set A and a Boolean ideal X on the set of omega-sequences of elements of A, we propose a method to endow the set of omega-operations on A with a topology, which we refer to as X-topology. Notably, the topology of pointwise convergence can be retrieved as a special case of this approach. Polymorphisms and invariant relations are then defined parametrically, with respect to the X-topology. We characterise the X-closed clones of omega-operations in terms of polymorphisms and invariant relations of arity omega, and present a method to relate those infinitary invariant relation and polymorphisms to the classical (finitary) Inv-Pol.

Summary

We haven't generated a summary for this paper yet.