Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MMCosine: Multi-Modal Cosine Loss Towards Balanced Audio-Visual Fine-Grained Learning (2303.05338v2)

Published 9 Mar 2023 in cs.SD, cs.MM, and eess.AS

Abstract: Audio-visual learning helps to comprehensively understand the world by fusing practical information from multiple modalities. However, recent studies show that the imbalanced optimization of uni-modal encoders in a joint-learning model is a bottleneck to enhancing the model's performance. We further find that the up-to-date imbalance-mitigating methods fail on some audio-visual fine-grained tasks, which have a higher demand for distinguishable feature distribution. Fueled by the success of cosine loss that builds hyperspherical feature spaces and achieves lower intra-class angular variability, this paper proposes Multi-Modal Cosine loss, MMCosine. It performs a modality-wise $L_2$ normalization to features and weights towards balanced and better multi-modal fine-grained learning. We demonstrate that our method can alleviate the imbalanced optimization from the perspective of weight norm and fully exploit the discriminability of the cosine metric. Extensive experiments prove the effectiveness of our method and the versatility with advanced multi-modal fusion strategies and up-to-date imbalance-mitigating methods.

Citations (17)

Summary

We haven't generated a summary for this paper yet.