Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Densely Connected $G$-invariant Deep Neural Networks with Signed Permutation Representations (2303.04614v2)

Published 8 Mar 2023 in cs.LG and stat.ML

Abstract: We introduce and investigate, for finite groups $G$, $G$-invariant deep neural network ($G$-DNN) architectures with ReLU activation that are densely connected-- i.e., include all possible skip connections. In contrast to other $G$-invariant architectures in the literature, the preactivations of the$G$-DNNs presented here are able to transform by \emph{signed} permutation representations (signed perm-reps) of $G$. Moreover, the individual layers of the $G$-DNNs are not required to be $G$-equivariant; instead, the preactivations are constrained to be $G$-equivariant functions of the network input in a way that couples weights across all layers. The result is a richer family of $G$-invariant architectures never seen previously. We derive an efficient implementation of $G$-DNNs after a reparameterization of weights, as well as necessary and sufficient conditions for an architecture to be admissible''-- i.e., nondegenerate and inequivalent to smaller architectures. We include code that allows a user to build a $G$-DNN interactively layer-by-layer, with the final architecture guaranteed to be admissible. We show that there are far more admissible $G$-DNN architectures than those accessible with theconcatenated ReLU'' activation function from the literature. Finally, we apply $G$-DNNs to two example problems -- (1) multiplication in ${-1, 1}$ (with theoretical guarantees) and (2) 3D object classification -- % finding that the inclusion of signed perm-reps significantly boosts predictive performance compared to baselines with only ordinary (i.e., unsigned) perm-reps.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Devanshu Agrawal (7 papers)
  2. James Ostrowski (18 papers)

Summary

We haven't generated a summary for this paper yet.