Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Influence Vehicles' Routing in Mixed-Autonomy Networks by Dynamically Controlling the Headway of Autonomous Cars (2303.04266v1)

Published 7 Mar 2023 in eess.SY and cs.SY

Abstract: It is known that autonomous cars can increase road capacities by maintaining a smaller headway through vehicle platooning. Recent works have shown that these capacity increases can influence vehicles' route choices in unexpected ways similar to the well-known Braess's paradox, such that the network congestion might increase. In this paper, we propose that in mixed-autonomy networks, i.e., networks where roads are shared between human-driven and autonomous cars, the headway of autonomous cars can be directly controlled to influence vehicles' routing and reduce congestion. We argue that the headway of autonomous cars -- and consequently the capacity of link segments -- is not just a fixed design choice; but rather, it can be leveraged as an {infrastructure control} strategy to {dynamically} regulate capacities. Imagine that similar to variable speed limits which regulate the maximum speed of vehicles on a road segment, a control policy regulates the headway of autonomous cars along each road segment. We seek to influence vehicles' route choices by directly controlling the headway of autonomous cars to prevent Braess-like unexpected outcomes and increase network efficiency. We model the dynamics of mixed-autonomy traffic networks while accounting for the vehicles' route choice dynamics. We train an RL policy that learns to regulate the headway of autonomous cars such that the total travel time in the network is minimized. We will show empirically that our trained policy can not only prevent Braess-like inefficiencies but also decrease total travel time.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com