Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive Weighted Multiview Kernel Matrix Factorization with its application in Alzheimer's Disease Analysis -- A clustering Perspective

Published 7 Mar 2023 in cs.LG and cs.AI | (2303.04154v1)

Abstract: Recent technology and equipment advancements provide with us opportunities to better analyze Alzheimer's disease (AD), where we could collect and employ the data from different image and genetic modalities that may potentially enhance the predictive performance. To perform better clustering in AD analysis, in this paper we propose a novel model to leverage data from all different modalities/views, which can learn the weights of each view adaptively. Different from previous vanilla Non-negative Matrix Factorization which assumes data is linearly separable, we propose a simple yet efficient method based on kernel matrix factorization, which is not only able to deal with non-linear data structure but also can achieve better prediction accuracy. Experimental results on ADNI dataset demonstrate the effectiveness of our proposed method, which indicate promising prospects of kernel application in AD analysis.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.