Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty Quantification of Spatiotemporal Travel Demand with Probabilistic Graph Neural Networks (2303.04040v2)

Published 7 Mar 2023 in cs.LG, stat.AP, and stat.ML

Abstract: Recent studies have significantly improved the prediction accuracy of travel demand using graph neural networks. However, these studies largely ignored uncertainty that inevitably exists in travel demand prediction. To fill this gap, this study proposes a framework of probabilistic graph neural networks (Prob-GNN) to quantify the spatiotemporal uncertainty of travel demand. This Prob-GNN framework is substantiated by deterministic and probabilistic assumptions, and empirically applied to the task of predicting the transit and ridesharing demand in Chicago. We found that the probabilistic assumptions (e.g. distribution tail, support) have a greater impact on uncertainty prediction than the deterministic ones (e.g. deep modules, depth). Among the family of Prob-GNNs, the GNNs with truncated Gaussian and Laplace distributions achieve the highest performance in transit and ridesharing data. Even under significant domain shifts, Prob-GNNs can predict the ridership uncertainty in a stable manner, when the models are trained on pre-COVID data and tested across multiple periods during and after the COVID-19 pandemic. Prob-GNNs also reveal the spatiotemporal pattern of uncertainty, which is concentrated on the afternoon peak hours and the areas with large travel volumes. Overall, our findings highlight the importance of incorporating randomness into deep learning for spatiotemporal ridership prediction. Future research should continue to investigate versatile probabilistic assumptions to capture behavioral randomness, and further develop methods to quantify uncertainty to build resilient cities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. K. Yang, J. Tu, and T. Chen, “Homoscedasticity: An overlooked critical assumption for linear regression,” General Psychiatry, vol. 32, no. 5, p. 100148, oct 2019. [Online]. Available: /pmc/articles/PMC6802968//pmc/articles/PMC6802968/?report=abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802968/
  2. X. Guo, N. S. Caros, and J. Zhao, “Robust matching-integrated vehicle rebalancing in ride-hailing system with uncertain demand,” Transportation Research Part B: Methodological, vol. 150, pp. 161–189, aug 2021. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0191261521001004
  3. X. Guo, Q. Wang, and J. Zhao, “Data-driven vehicle rebalancing with predictive prescriptions in the ride-hailing system,” IEEE Open Journal of Intelligent Transportation Systems, vol. 3, pp. 251–266, 2022.
  4. H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong, Z. Li, J. Ye, and D. Chuxing, “Deep multi-view spatial-temporal network for taxi demand prediction,” 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, pp. 2588–2595, 2018.
  5. Y. Wu, D. Zhuang, A. Labbe, and L. Sun, “Inductive graph neural networks for spatiotemporal kriging,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 5, pp. 4478–4485, May 2021. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/16575
  6. F. Liu, J. Wang, J. Tian, D. Zhuang, L. Miranda-Moreno, and L. Sun, “A universal framework of spatiotemporal bias block for long-term traffic forecasting,” IEEE Transactions on Intelligent Transportation Systems, 2022.
  7. D. Zhuang, S. Hao, D.-H. Lee, and J. G. Jin, “From compound word to metropolitan station: Semantic similarity analysis using smart card data,” Transportation Research Part C: Emerging Technologies, vol. 114, pp. 322–337, 2020.
  8. J. Ke, H. Zheng, H. Yang, and X. Chen, “Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach,” Transportation Research Part C-emerging Technologies, 2017.
  9. J. Ye, J. Zhao, K. Ye, and C. Xu, “Multi-STGCnet: A Graph Convolution Based Spatial-Temporal Framework for Subway Passenger Flow Forecasting,” in Proceedings of the International Joint Conference on Neural Networks.   Institute of Electrical and Electronics Engineers Inc., jul 2020.
  10. L. Liu, J. Chen, H. Wu, J. Zhen, G. Li, and L. Lin, “Physical-Virtual Collaboration Modeling for Intra- and Inter-Station Metro Ridership Prediction,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–15, 2020.
  11. S. Wang, B. Mo, and J. Zhao, “Deep neural networks for choice analysis: Architecture design with alternative-specific utility functions,” Transportation Research Part C: Emerging Technologies, vol. 112, pp. 234–251, 2020.
  12. S. Wang, Q. Wang, and J. Zhao, “Deep neural networks for choice analysis: Extracting complete economic information for interpretation,” Transportation Research Part C: Emerging Technologies, vol. 118, p. 102701, 2020.
  13. ——, “Multitask learning deep neural networks to combine revealed and stated preference data,” Journal of Choice Modelling, p. 100236, 2020.
  14. X. Xiong, K. Ozbay, L. Jin, and C. Feng, “Dynamic origin–destination matrix prediction with line graph neural networks and kalman filter,” Transportation Research Record, vol. 2674, no. 8, pp. 491–503, 2020.
  15. D. Koca, J. D. Schmöcker, and K. Fukuda, “Origin-destination matrix estimation by deep learning using maps with new york case study,” in 2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS).   IEEE, 2021, pp. 1–6.
  16. J. Ye, J. Zhao, K. Ye, and C. Xu, “How to Build a Graph-Based Deep Learning Architecture in Traffic Domain: A Survey,” IEEE Transactions on Intelligent Transportation Systems, 2020.
  17. Y. Liu, C. Lyu, Y. Zhang, Z. Liu, W. Yu, and X. Qu, “Deeptsp: Deep traffic state prediction model based on large-scale empirical data,” Communications in transportation research, vol. 1, p. 100012, 2021.
  18. X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, and Y. Liu, “Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand Forecasting,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3656–3663, 2019.
  19. H. Shi, Q. Yao, Q. Guo, Y. Li, L. Zhang, J. Ye, Y. Li, and Y. Liu, “Predicting origin-destination flow via multi-perspective graph convolutional network,” in 2020 IEEE 36th International Conference on Data Engineering (ICDE).   IEEE, 2020, pp. 1818–1821.
  20. Y. Liu, Z. Liu, C. Lyu, and J. Ye, “Attention-based deep ensemble net for large-scale online taxi-hailing demand prediction,” IEEE transactions on intelligent transportation systems, vol. 21, no. 11, pp. 4798–4807, 2019.
  21. D. Cao, K. Zeng, J. Wang, P. K. Sharma, X. Ma, Y. Liu, and S. Zhou, “Bert-based deep spatial-temporal network for taxi demand prediction,” IEEE Transactions on Intelligent Transportation Systems, 2021.
  22. W. Wang and Y. Wu, “Is uncertainty always bad for the performance of transportation systems?” Communications in transportation research, vol. 1, p. 100021, 2021.
  23. Y. Zhao and K. M. Kockelman, “The propagation of uncertainty through travel demand models: An exploratory analysis,” Annals of Regional Science, vol. 36, no. 1, pp. 145–163, 2002. [Online]. Available: https://link.springer.com/article/10.1007/s001680200072
  24. W. Qian, D. Zhang, Y. Zhao, K. Zheng, and J. James, “Uncertainty quantification for traffic forecasting: A unified approach,” in 2023 IEEE 39th International Conference on Data Engineering (ICDE).   IEEE, 2023, pp. 992–1004.
  25. J. Wang, S. Guo, T. Wei, Y. Zhao, Y. Lin, H. Wan et al., “Spatial-temporal uncertainty-aware graph networks for promoting accuracy and reliability of traffic forecasting.”
  26. C. Li, L. Bai, W. Liu, L. Yao, and S. T. Waller, “Graph Neural Network for Robust Public Transit Demand Prediction,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–13, 2020.
  27. H. Maryam, T. Panayiotou, and G. Ellinas, “Uncertainty quantification and consideration in ml-aided traffic-driven service provisioning,” Computer Communications, vol. 202, pp. 13–22, 2023.
  28. F. Rodrigues and F. C. Pereira, “Beyond Expectation: Deep Joint Mean and Quantile Regression for Spatiotemporal Problems,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–13, 2020.
  29. D. Zhuang, S. Wang, H. Koutsopoulos, and J. Zhao, “Uncertainty quantification of sparse travel demand prediction with spatial-temporal graph neural networks,” in Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 4639–4647.
  30. T. Pearce, M. Zaki, A. Brintrup, and A. Neely, “High-quality prediction intervals for deep learning: A distribution-free, ensembled approach,” 35th International Conference on Machine Learning, ICML 2018, vol. 9, pp. 6473–6482, 2018.
  31. A. Khosravi, S. Nahavandi, D. Creighton, and A. F. Atiya, “Lower upper bound estimation method for construction of neural network-based prediction intervals,” IEEE Transactions on Neural Networks, vol. 22, no. 3, pp. 337–346, 2011.
  32. D. A. Nix and A. S. Weigend, “Estimating the mean and variance of the target probability distribution,” in IEEE International Conference on Neural Networks - Conference Proceedings, 1994.
  33. A. Khosravi and S. Nahavandi, “An optimized mean variance estimation method for uncertainty quantification of wind power forecasts,” International Journal of Electrical Power & Energy Systems, vol. 61, pp. 446–454, 2014.
  34. R. Koenker and K. F. Hallock, “Quantile regression,” Journal of Economic Perspectives, 2001.
  35. H. M. Kabir, A. Khosravi, M. A. Hosen, and S. Nahavandi, “Neural Network-Based Uncertainty Quantification: A Survey of Methodologies and Applications,” IEEE Access, vol. 6, pp. 36 218–36 234, 2018.
  36. J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe, R. Triebel, P. Jung, R. Roscher, M. Shahzad, W. Yang, R. Bamler, and X. X. Zhu, “A Survey of Uncertainty in Deep Neural Networks,” jul 2021. [Online]. Available: https://arxiv.org/abs/2107.03342v3
  37. C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty in neural networks,” 32nd International Conference on Machine Learning, ICML 2015, vol. 2, pp. 1613–1622, 2015.
  38. Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation: Representing model uncertainty in deep learning,” in 33rd International Conference on Machine Learning, ICML 2016, 2016.
  39. J. Sicking, M. Akila, M. Pintz, T. Wirtz, A. Fischer, and S. Wrobel, “A Novel Regression Loss for Non-Parametric Uncertainty Optimization,” pp. 2021–2022, jan 2021. [Online]. Available: https://arxiv.org/abs/2101.02726v1http://arxiv.org/abs/2101.02726
  40. T. Heskes, “Practical confidence and prediction intervals,” in Advances in Neural Information Processing Systems, 1997.
  41. B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles,” 31st Conference on Neural Information Processing Systems (NIPS 2017), vol. 43, no. 2, pp. 145–150, dec 2016. [Online]. Available: http://arxiv.org/abs/1612.01474
  42. E. Chen, Z. Ye, C. Wang, and M. Xu, “Subway Passenger Flow Prediction for Special Events Using Smart Card Data,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 3, pp. 1109–1120, mar 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8725576/
  43. J. Guo, W. Huang, and B. M. Williams, “Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification,” Transportation Research Part C: Emerging Technologies, vol. 43, pp. 50–64, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.trc.2014.02.006
  44. O. Petrik, F. Moura, and J. d. A. e. Silva, “Measuring uncertainty in discrete choice travel demand forecasting models,” Transportation Planning and Technology, vol. 39, no. 2, pp. 218–237, feb 2016. [Online]. Available: https://www.tandfonline.com/action/journalInformation?journalCode=gtpt20
  45. M. Cools, B. Kochan, T. Bellemans, D. Janssens, and G. Wets, “Assessment of the effect of micro-simulation error on key travel indices: evidence from the activity-based model feathers,” 90th Annual Meeting of the Transportation Research Board, pp. 1–15, 2010. [Online]. Available: https://orbi.uliege.be/handle/2268/134326
  46. E. Vlahogianni and M. Karlaftis, “Temporal aggregation in traffic data: implications for statistical characteristics and model choice,” Transportation Letters, vol. 3, no. 1, pp. 37–49, 2011.
  47. Y. Zhang, R. Sun, A. Haghani, and X. Zeng, “Univariate volatility-based models for improving quality of travel time reliability forecasting,” Transportation research record, vol. 2365, no. 1, pp. 73–81, 2013.
  48. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings, pp. 1–14, 2017.
  49. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.
  50. A. D. Kiureghian and O. Ditlevsen, “Aleatory or epistemic? Does it matter?” Structural Safety, vol. 31, no. 2, pp. 105–112, 2009. [Online]. Available: http://dx.doi.org/10.1016/j.strusafe.2008.06.020
  51. Y. Ye and S. Ji, “Sparse graph attention networks,” IEEE Transactions on Knowledge and Data Engineering, 2021.
Citations (15)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets