Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate degree lower bounds for oracle identification problems (2303.03921v2)

Published 7 Mar 2023 in cs.CC and quant-ph

Abstract: The approximate degree of a Boolean function is the minimum degree of real polynomial that approximates it pointwise. For any Boolean function, its approximate degree serves as a lower bound on its quantum query complexity, and generically lifts to a quantum communication lower bound for a related function. We introduce a framework for proving approximate degree lower bounds for certain oracle identification problems, where the goal is to recover a hidden binary string $x \in {0, 1}n$ given possibly non-standard oracle access to it. Our lower bounds apply to decision versions of these problems, where the goal is to compute the parity of $x$. We apply our framework to the ordered search and hidden string problems, proving nearly tight approximate degree lower bounds of $\Omega(n/\log2 n)$ for each. These lower bounds generalize to the weakly unbounded error setting, giving a new quantum query lower bound for the hidden string problem in this regime. Our lower bounds are driven by randomized communication upper bounds for the greater-than and equality functions.

Summary

We haven't generated a summary for this paper yet.