Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Margin theory for the scenario-based approach to robust optimization in high dimension (2303.03891v1)

Published 7 Mar 2023 in math.OC and stat.ML

Abstract: This paper deals with the scenario approach to robust optimization. This relies on a random sampling of the possibly infinite number of constraints induced by uncertainties in the parameters of an optimization problem. Solving the resulting random program yields a solution for which the quality is measured in terms of the probability of violating the constraints for a random value of the uncertainties, typically unseen before. Another central issue is the determination of the sample complexity, i.e., the number of random constraints (or scenarios) that one must consider in order to guarantee a certain level of reliability. In this paper, we introduce the notion of margin to improve upon standard results in this field. In particular, using tools from statistical learning theory, we show that the sample complexity of a class of random programs does not explicitly depend on the number of variables. In addition, within the considered class, that includes polynomial constraints among others, this result holds for both convex and nonconvex instances with the same level of guarantees. We also derive a posteriori bounds on the probability of violation and sketch a regularization approach that could be used to improve the reliability of computed solutions on the basis of these bounds.

Citations (1)

Summary

We haven't generated a summary for this paper yet.