Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sandpile Universality in Social Inequality: Gini and Kolkata Measures (2303.03795v3)

Published 7 Mar 2023 in physics.soc-ph and cond-mat.stat-mech

Abstract: Social inequalities are ubiquitous and evolve towards a universal limit. Herein, we extensively review the values of inequality measures, namely the Gini ($g$) index and the Kolkata ($k$) index, two standard measures of inequality used in the analysis of various social sectors through data analysis. The Kolkata index, denoted as $k$, indicates the proportion of the wealth' owned by $(1-k)$ fraction of thepeople'. Our findings suggest that both the Gini index and the Kolkata index tend to converge to similar values (around $g=k \approx 0.87$, starting from the point of perfect equality, where $g=0$ and $k=0.5$) as competition increases in different social institutions, such as markets, movies, elections, universities, prize winning, battle fields, sports (Olympics), etc., under conditions of unrestricted competition (no social welfare or support mechanism). In this review, we present the concept of a generalized form of Pareto's 80/20 law ($k=0.80$), where the coincidence of inequality indices is observed. The observation of this coincidence is consistent with the precursor values of the $g$ and $k$ indices for the self-organized critical (SOC) state in self-tuned physical systems such as sand piles. These results provide quantitative support for the view that interacting socioeconomic systems can be understood within the framework of SOC, which has been hypothesized for many years. These findings suggest that the SOC model can be extended to capture the dynamics of complex socioeconomic systems and help us better understand their behavior.

Summary

We haven't generated a summary for this paper yet.