Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing formation enthalpies through an explainable machine learning method: the case of Lanthanide Orthophosphates solid solutions (2303.03748v1)

Published 7 Mar 2023 in cs.CE, cond-mat.mtrl-sci, and cs.LG

Abstract: In the last decade, the use of Machine and Deep Learning (MDL) methods in Condensed Matter physics has seen a steep increase in the number of problems tackled and methods employed. A number of distinct MDL approaches have been employed in many different topics; from prediction of materials properties to computation of Density Functional Theory potentials and inter-atomic force fields. In many cases the result is a surrogate model which returns promising predictions but is opaque on the inner mechanisms of its success. On the other hand, the typical practitioner looks for answers that are explainable and provide a clear insight on the mechanisms governing a physical phenomena. In this work, we describe a proposal to use a sophisticated combination of traditional Machine Learning methods to obtain an explainable model that outputs an explicit functional formulation for the material property of interest. We demonstrate the effectiveness of our methodology in deriving a new highly accurate expression for the enthalpy of formation of solid solutions of lanthanides orthophosphates.

Citations (1)

Summary

We haven't generated a summary for this paper yet.