Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chance-Aware Lane Change with High-Level Model Predictive Control Through Curriculum Reinforcement Learning (2303.03723v3)

Published 7 Mar 2023 in cs.RO

Abstract: Lane change in dense traffic typically requires the recognition of an appropriate opportunity for maneuvers, which remains a challenging problem in self-driving. In this work, we propose a chance-aware lane-change strategy with high-level model predictive control (MPC) through curriculum reinforcement learning (CRL). In our proposed framework, full-state references and regulatory factors concerning the relative importance of each cost term in the embodied MPC are generated by a neural policy. Furthermore, effective curricula are designed and integrated into an episodic reinforcement learning (RL) framework with policy transfer and enhancement, to improve the convergence speed and ensure a high-quality policy. The proposed framework is deployed and evaluated in numerical simulations of dense and dynamic traffic. It is noteworthy that, given a narrow chance, the proposed approach generates high-quality lane-change maneuvers such that the vehicle merges into the traffic flow with a high success rate of 96%. Finally, our framework is validated in the high-fidelity simulator under dense traffic, demonstrating satisfactory practicality and generalizability.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. M. Mukai, H. Natori, and M. Fujita, “Model predictive control with a mixed integer programming for merging path generation on motor way,” in 2017 IEEE Conference on Control Technology and Applications (CCTA).   IEEE, 2017, pp. 2214–2219.
  2. S. Dixit, U. Montanaro, M. Dianati, D. Oxtoby, T. Mizutani, A. Mouzakitis, and S. Fallah, “Trajectory planning for autonomous high-speed overtaking in structured environments using robust MPC,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 6, pp. 2310–2323, 2019.
  3. F. Eiras, M. Hawasly, S. V. Albrecht, and S. Ramamoorthy, “A two-stage optimization-based motion planner for safe urban driving,” IEEE Transactions on Robotics, vol. 38, no. 2, pp. 822–834, 2021.
  4. B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and P. Pérez, “Deep reinforcement learning for autonomous driving: A survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 6, pp. 4909–4926, 2021.
  5. I. Nishitani, H. Yang, R. Guo, S. Keshavamurthy, and K. Oguchi, “Deep merging: Vehicle merging controller based on deep reinforcement learning with embedding network,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 216–221.
  6. F. Fuchs, Y. Song, E. Kaufmann, D. Scaramuzza, and P. Dürr, “Super-human performance in Gran Turismo Sport using deep reinforcement learning,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4257–4264, 2021.
  7. Y. Song, H. Lin, E. Kaufmann, P. Dürr, and D. Scaramuzza, “Autonomous overtaking in Gran Turismo Sport using curriculum reinforcement learning,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 9403–9409.
  8. J. Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-based model predictive control for autonomous racing,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3363–3370, 2019.
  9. L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model predictive control using Gaussian process regression,” IEEE Transactions on Control Systems Technology, vol. 28, no. 6, pp. 2736–2743, 2019.
  10. S. Bae, D. Saxena, A. Nakhaei, C. Choi, K. Fujimura, and S. Moura, “Cooperation-aware lane change maneuver in dense traffic based on model predictive control with recurrent neural network,” in 2020 American Control Conference (ACC).   IEEE, 2020, pp. 1209–1216.
  11. S. Bae, D. Isele, A. Nakhaei, P. Xu, A. M. Añon, C. Choi, K. Fujimura, and S. Moura, “Lane-change in dense traffic with model predictive control and neural networks,” IEEE Transactions on Control Systems Technology, vol. 31, no. 2, pp. 646–659, 2022.
  12. Y. Song and D. Scaramuzza, “Learning high-level policies for model predictive control,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 7629–7636.
  13. ——, “Policy search for model predictive control with application to agile drone flight,” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2114–2130, 2022.
  14. Y. Wang, B. Wang, S. Zhang, H. W. Sia, and L. Zhao, “Learning agile flight maneuvers: Deep SE(3) motion planning and control for quadrotors,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 1680–1686.
  15. Q. Ge, Q. Sun, S. E. Li, S. Zheng, W. Wu, and X. Chen, “Numerically stable dynamic bicycle model for discrete-time control,” in 2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops).   IEEE, 2021, pp. 128–134.
  16. J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi: a software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.
  17. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning library,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  18. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  19. L. Biewald, “Experiment tracking with weights and biases,” 2020, software available from wandb.com. [Online]. Available: https://www.wandb.com/
  20. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open urban driving simulator,” in Conference on Robot Learning.   PMLR, 2017, pp. 1–16.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yubin Wang (26 papers)
  2. Yulin Li (35 papers)
  3. Zengqi Peng (12 papers)
  4. Hakim Ghazzai (39 papers)
  5. Jun Ma (347 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.