Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MPool: Motif-Based Graph Pooling (2303.03654v1)

Published 7 Mar 2023 in cs.LG and cs.SI

Abstract: Graph Neural networks (GNNs) have recently become a powerful technique for many graph-related tasks including graph classification. Current GNN models apply different graph pooling methods that reduce the number of nodes and edges to learn the higher-order structure of the graph in a hierarchical way. All these methods primarily rely on the one-hop neighborhood. However, they do not consider the higher- order structure of the graph. In this work, we propose a multi-channel Motif-based Graph Pooling method named (MPool) captures the higher-order graph structure with motif and local and global graph structure with a combination of selection and clustering-based pooling operations. As the first channel, we develop node selection-based graph pooling by designing a node ranking model considering the motif adjacency of nodes. As the second channel, we develop cluster-based graph pooling by designing a spectral clustering model using motif adjacency. As the final layer, the result of each channel is aggregated into the final graph representation. We perform extensive experiments on eight benchmark datasets and show that our proposed method shows better accuracy than the baseline methods for graph classification tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Muhammad Ifte Khairul Islam (3 papers)
  2. Max Khanov (1 paper)
  3. Esra Akbas (23 papers)
Citations (3)