Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Parallel Monte-Carlo Tree Search-Based Metaheuristic For Optimal Fleet Composition Considering Vehicle Routing Using Branch & Bound (2303.03156v4)

Published 6 Mar 2023 in eess.SY and cs.SY

Abstract: Autonomous mobile robots enable increased flexibility of manufacturing systems. The design and operating strategy of such a fleet of robots requires careful consideration of both fixed and operational costs. In this paper, a Monte-Carlo Tree Search (MCTS)-based metaheuristic is developed that guides a Branch & Bound (B&B) algorithm to find the globally optimal solution to the Fleet Size and Mix Vehicle Routing Problem with Time Windows (FSMVRPTW).The metaheuristic and exact algorithms are implemented in a parallel hybrid optimization algorithm where the metaheuristic rapidly finds feasible solutions that provide candidate upper bounds for the B&B algorithm. The MCTS additionally provides a candidate fleet composition to initiate the B&B search. Experiments show that the proposed approach results in significant improvements in computation time and convergence to the optimal solution.

Citations (6)

Summary

We haven't generated a summary for this paper yet.