Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Planck Constraints and Gravitational Wave Forecasts for Primordial Black Hole Dark Matter Seeded by Multifield Inflation (2303.02168v2)

Published 3 Mar 2023 in astro-ph.CO, gr-qc, hep-ph, and hep-th

Abstract: We perform a Markov Chain Monte Carlo (MCMC) analysis of a simple yet generic multifield inflation model characterized by two scalar fields coupled to each other and nonminimally coupled to gravity, fit to Planck 2018 cosmic microwave background (CMB) data. In particular, model parameters are constrained by data on the amplitude of the primordial power spectrum of scalar curvature perturbations on CMB scales $A_s$, the spectral index $n_s$, and the ratio of power in tensor to scalar modes $r$, with a prior that the primordial power spectrum should also lead to primordial black hole (PBH) production sufficient to account for the observed dark matter (DM) abundance. We find that $n_s$ in particular controls the constraints on our model. Whereas previous studies of PBH formation from an ultra-slow-roll phase of inflation have highlighted the need for at least one model parameter to be highly fine-tuned, we identify a degeneracy direction in parameter space such that shifts by $\sim 10\%$ of one parameter can be compensated by comparable shifts in other parameters while preserving a close fit between model predictions and observations. Furthermore, we find this allowed parameter region produces observable gravitational wave (GW) signals in the frequency ranges to which upcoming experiments are projected to be sensitive, including Advanced LIGO and Virgo, the Einstein Telescope (ET), Cosmic Explorer (CE), DECIGO, and LISA.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (168)
  1. I. D. Zel’dovich, Ya.B.; Novikov, “The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model,” Soviet Astron. AJ (Engl. Transl. ), 10, 602 (1967).
  2. Stephen Hawking, “Gravitationally collapsed objects of very low mass,” Mon. Not. Roy. Astron. Soc. 152, 75 (1971).
  3. Bernard J. Carr and S. W. Hawking, “Black holes in the early Universe,” Mon. Not. Roy. Astron. Soc. 168, 399–415 (1974).
  4. P. Meszaros, “The behaviour of point masses in an expanding cosmological substratum,” Astron. Astrophys. 37, 225–228 (1974).
  5. Bernard J. Carr, “The Primordial black hole mass spectrum,” Astrophys. J. 201, 1–19 (1975).
  6. Jens C. Niemeyer and K. Jedamzik, “Dynamics of primordial black hole formation,” Phys. Rev. D 59, 124013 (1999), arXiv:astro-ph/9901292 .
  7. Maxim Yu. Khlopov, “Primordial Black Holes,” Res. Astron. Astrophys. 10, 495–528 (2010), arXiv:0801.0116 [astro-ph] .
  8. Misao Sasaki, Teruaki Suyama, Takahiro Tanaka,  and Shuichiro Yokoyama, “Primordial black holes—perspectives in gravitational wave astronomy,” Class. Quant. Grav. 35, 063001 (2018), arXiv:1801.05235 [astro-ph.CO] .
  9. Bernard Carr, Kazunori Kohri, Yuuiti Sendouda,  and Jun’ichi Yokoyama, “Constraints on primordial black holes,” Rept. Prog. Phys. 84, 116902 (2021), arXiv:2002.12778 [astro-ph.CO] .
  10. Bernard Carr and Florian Kühnel, “Primordial Black Holes as Dark Matter: Recent Developments,” Ann. Rev. Nucl. Part. Sci. 70, 355–394 (2020), arXiv:2006.02838 [astro-ph.CO] .
  11. Anne M. Green and Bradley J. Kavanagh, “Primordial Black Holes as a dark matter candidate,” J. Phys. G 48, 043001 (2021), arXiv:2007.10722 [astro-ph.CO] .
  12. Albert Escrivà, “PBH Formation from Spherically Symmetric Hydrodynamical Perturbations: A Review,” Universe 8, 66 (2022), arXiv:2111.12693 [gr-qc] .
  13. Pablo Villanueva-Domingo, Olga Mena,  and Sergio Palomares-Ruiz, “A brief review on primordial black holes as dark matter,” Front. Astron. Space Sci. 8, 87 (2021), arXiv:2103.12087 [astro-ph.CO] .
  14. Albert Escrivà, Florian Kuhnel,  and Yuichiro Tada, “Primordial Black Holes,”   (2022), arXiv:2211.05767 [astro-ph.CO] .
  15. Ogan Özsoy and Gianmassimo Tasinato, “Inflation and Primordial Black Holes,”   (2023), arXiv:2301.03600 [astro-ph.CO] .
  16. Keisuke Inomata, Evan McDonough,  and Wayne Hu, “Amplification of primordial perturbations from the rise or fall of the inflaton,” JCAP 02, 031 (2022), arXiv:2110.14641 [astro-ph.CO] .
  17. Keisuke Inomata, Evan McDonough,  and Wayne Hu, “Primordial black holes arise when the inflaton falls,” Phys. Rev. D 104, 123553 (2021), arXiv:2104.03972 [astro-ph.CO] .
  18. Jose Maria Ezquiaga, Juan Garcia-Bellido,  and Ester Ruiz Morales, “Primordial Black Hole production in Critical Higgs Inflation,” Phys. Lett. B 776, 345–349 (2018), arXiv:1705.04861 [astro-ph.CO] .
  19. Sander Mooij and Marieke Postma, “Goldstone bosons and a dynamical Higgs field,” JCAP 09, 006 (2011), arXiv:1104.4897 [hep-ph] .
  20. Ross N. Greenwood, David I. Kaiser,  and Evangelos I. Sfakianakis, “Multifield Dynamics of Higgs Inflation,” Phys. Rev. D 87, 064021 (2013), arXiv:1210.8190 [hep-ph] .
  21. Shinsuke Kawai and Jinsu Kim, “Multifield dynamics of supersymmetric Higgs inflation in SU(5) GUT,” Phys. Rev. D 93, 065023 (2016), arXiv:1512.05861 [hep-ph] .
  22. Sarah R. Geller, Wenzer Qin, Evan McDonough,  and David I. Kaiser, “Primordial black holes from multifield inflation with nonminimal couplings,” Phys. Rev. D 106, 063535 (2022), arXiv:2205.04471 [hep-th] .
  23. Juan Garcia-Bellido and Ester Ruiz Morales, “Primordial black holes from single field models of inflation,” Phys. Dark Univ. 18, 47–54 (2017), arXiv:1702.03901 [astro-ph.CO] .
  24. Cristiano Germani and Tomislav Prokopec, “On primordial black holes from an inflection point,” Phys. Dark Univ. 18, 6–10 (2017), arXiv:1706.04226 [astro-ph.CO] .
  25. Kristjan Kannike, Luca Marzola, Martti Raidal,  and Hardi Veermäe, “Single Field Double Inflation and Primordial Black Holes,” JCAP 09, 020 (2017), arXiv:1705.06225 [astro-ph.CO] .
  26. Hayato Motohashi and Wayne Hu, “Primordial Black Holes and Slow-Roll Violation,” Phys. Rev. D 96, 063503 (2017), arXiv:1706.06784 [astro-ph.CO] .
  27. Haoran Di and Yungui Gong, “Primordial black holes and second order gravitational waves from ultra-slow-roll inflation,” JCAP 07, 007 (2018), arXiv:1707.09578 [astro-ph.CO] .
  28. Guillermo Ballesteros and Marco Taoso, ‘‘Primordial black hole dark matter from single field inflation,” Phys. Rev. D 97, 023501 (2018), arXiv:1709.05565 [hep-ph] .
  29. Chris Pattison, Vincent Vennin, Hooshyar Assadullahi,  and David Wands, “Quantum diffusion during inflation and primordial black holes,” JCAP 10, 046 (2017), arXiv:1707.00537 [hep-th] .
  30. Samuel Passaglia, Wayne Hu,  and Hayato Motohashi, “Primordial black holes and local non-Gaussianity in canonical inflation,” Phys. Rev. D 99, 043536 (2019), arXiv:1812.08243 [astro-ph.CO] .
  31. Matteo Biagetti, Gabriele Franciolini, Alex Kehagias,  and Antonio Riotto, “Primordial Black Holes from Inflation and Quantum Diffusion,” JCAP 07, 032 (2018), arXiv:1804.07124 [astro-ph.CO] .
  32. Christian T. Byrnes, Philippa S. Cole,  and Subodh P. Patil, “Steepest growth of the power spectrum and primordial black holes,” JCAP 06, 028 (2019), arXiv:1811.11158 [astro-ph.CO] .
  33. Pedro Carrilho, Karim A. Malik,  and David J. Mulryne, “Dissecting the growth of the power spectrum for primordial black holes,” Phys. Rev. D 100, 103529 (2019), arXiv:1907.05237 [astro-ph.CO] .
  34. Daniel G. Figueroa, Sami Raatikainen, Syksy Rasanen,  and Eemeli Tomberg, “Non-Gaussian Tail of the Curvature Perturbation in Stochastic Ultraslow-Roll Inflation: Implications for Primordial Black Hole Production,” Phys. Rev. Lett. 127, 101302 (2021a), arXiv:2012.06551 [astro-ph.CO] .
  35. Shyam Balaji, Joseph Silk,  and Yi-Peng Wu, “Induced gravitational waves from the cosmic coincidence,” JCAP 06, 008 (2022a), arXiv:2202.00700 [astro-ph.CO] .
  36. Shyam Balaji, H. V. Ragavendra, Shiv K. Sethi, Joseph Silk,  and L. Sriramkumar, “Observing Nulling of Primordial Correlations via the 21-cm Signal,” Phys. Rev. Lett. 129, 261301 (2022b), arXiv:2206.06386 [astro-ph.CO] .
  37. Shinsuke Kawai and Jinsu Kim, “Primordial black holes and gravitational waves from nonminimally coupled supergravity inflation,” Phys. Rev. D 107, 043523 (2023), arXiv:2209.15343 [astro-ph.CO] .
  38. Alexandros Karam, Niko Koivunen, Eemeli Tomberg, Ville Vaskonen,  and Hardi Veermäe, “Anatomy of single-field inflationary models for primordial black holes,” JCAP 03, 013 (2023), arXiv:2205.13540 [astro-ph.CO] .
  39. Shi Pi and Misao Sasaki, “Logarithmic Duality of the Curvature Perturbation,”   (2022), arXiv:2211.13932 [astro-ph.CO] .
  40. Y. Akrami et al. (Planck), “Planck 2018 results. X. Constraints on inflation,” Astron. Astrophys. 641, A10 (2020a), arXiv:1807.06211 [astro-ph.CO] .
  41. N. Aghanim et al. (Planck), “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  42. Y. Akrami et al. (Planck), ‘‘Planck 2018 results. IX. Constraints on primordial non-Gaussianity,” Astron. Astrophys. 641, A9 (2020b), arXiv:1905.05697 [astro-ph.CO] .
  43. P. A. R. Ade et al. (BICEP, Keck), “Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season,” Phys. Rev. Lett. 127, 151301 (2021), arXiv:2110.00483 [astro-ph.CO] .
  44. M. C. Guzzetti, N. Bartolo, M. Liguori,  and S. Matarrese, “Gravitational waves from inflation,” Riv. Nuovo Cim. 39, 399–495 (2016), arXiv:1605.01615 [astro-ph.CO] .
  45. Chiara Caprini and Daniel G. Figueroa, “Cosmological Backgrounds of Gravitational Waves,” Class. Quant. Grav. 35, 163001 (2018), arXiv:1801.04268 [astro-ph.CO] .
  46. Guillem Domènech, “Scalar Induced Gravitational Waves Review,” Universe 7, 398 (2021), arXiv:2109.01398 [gr-qc] .
  47. Ryo Saito and Jun’ichi Yokoyama, “Gravitational wave background as a probe of the primordial black hole abundance,” Phys. Rev. Lett. 102, 161101 (2009), [Erratum: Phys.Rev.Lett. 107, 069901 (2011)], arXiv:0812.4339 [astro-ph] .
  48. Ryo Saito and Jun’ichi Yokoyama, “Gravitational-Wave Constraints on the Abundance of Primordial Black Holes,” Prog. Theor. Phys. 123, 867–886 (2010), [Erratum: Prog.Theor.Phys. 126, 351–352 (2011)], arXiv:0912.5317 [astro-ph.CO] .
  49. Hooshyar Assadullahi and David Wands, “Constraints on primordial density perturbations from induced gravitational waves,” Phys. Rev. D 81, 023527 (2010), arXiv:0907.4073 [astro-ph.CO] .
  50. Edgar Bugaev and Peter Klimai, “Induced gravitational wave background and primordial black holes,” Phys. Rev. D 81, 023517 (2010), arXiv:0908.0664 [astro-ph.CO] .
  51. Edgar Bugaev and Peter Klimai, “Constraints on the induced gravitational wave background from primordial black holes,” Phys. Rev. D 83, 083521 (2011), arXiv:1012.4697 [astro-ph.CO] .
  52. Keisuke Inomata and Tomohiro Nakama, “Gravitational waves induced by scalar perturbations as probes of the small-scale primordial spectrum,” Phys. Rev. D 99, 043511 (2019), arXiv:1812.00674 [astro-ph.CO] .
  53. R. Abbott et al. (KAGRA, Virgo, LIGO Scientific), “Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo’s third observing run,” Phys. Rev. D 104, 022004 (2021), arXiv:2101.12130 [gr-qc] .
  54. Enrico Barausse et al., “Prospects for Fundamental Physics with LISA,” Gen. Rel. Grav. 52, 81 (2020), arXiv:2001.09793 [gr-qc] .
  55. Michele Maggiore et al., “Science Case for the Einstein Telescope,” JCAP 03, 050 (2020), arXiv:1912.02622 [astro-ph.CO] .
  56. David Reitze et al., “Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO,” Bull. Am. Astron. Soc. 51, 035 (2019), arXiv:1907.04833 [astro-ph.IM] .
  57. Chen Yuan and Qing-Guo Huang, “A topic review on probing primordial black hole dark matter with scalar induced gravitational waves,”   (2021), arXiv:2103.04739 [astro-ph.GA] .
  58. Seiji Kawamura et al., “Current status of space gravitational wave antenna DECIGO and B-DECIGO,” PTEP 2021, 05A105 (2021), arXiv:2006.13545 [gr-qc] .
  59. Jerome Martin, Christophe Ringeval,  and Vincent Vennin, “Encyclopædia Inflationaris,” Phys. Dark Univ. 5-6, 75–235 (2014), arXiv:1303.3787 [astro-ph.CO] .
  60. Alan H. Guth, David I. Kaiser,  and Yasunori Nomura, “Inflationary paradigm after Planck 2013,” Phys. Lett. B 733, 112–119 (2014), arXiv:1312.7619 [astro-ph.CO] .
  61. Shinsuke Kawai and Jinsu Kim, “Primordial black holes from Gauss-Bonnet-corrected single field inflation,” Phys. Rev. D 104, 083545 (2021), arXiv:2108.01340 [astro-ph.CO] .
  62. Waqas Ahmed, M. Junaid,  and Umer Zubair, “Primordial black holes and gravitational waves in hybrid inflation with chaotic potentials,” Nucl. Phys. B 984, 115968 (2022), arXiv:2109.14838 [astro-ph.CO] .
  63. David H. Lyth and Antonio Riotto, “Particle physics models of inflation and the cosmological density perturbation,” Phys. Rept. 314, 1–146 (1999), arXiv:hep-ph/9807278 .
  64. Anupam Mazumdar and Jonathan Rocher, “Particle physics models of inflation and curvaton scenarios,” Phys. Rept. 497, 85–215 (2011), arXiv:1001.0993 [hep-ph] .
  65. Shyam Balaji, Guillem Domenech,  and Joseph Silk, “Induced gravitational waves from slow-roll inflation after an enhancing phase,”   (2022c), arXiv:2205.01696 [astro-ph.CO] .
  66. Curtis G. Callan, Jr., Sidney R. Coleman,  and Roman Jackiw, “A New improved energy - momentum tensor,” Annals Phys. 59, 42–73 (1970).
  67. T. S. Bunch, P. Panangaden,  and L. Parker, “On renormalization of λ⁢ϕ4𝜆superscriptitalic-ϕ4\lambda\phi^{4}italic_λ italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT field theory in curved space-time. I,” J. Phys. A 13, 901–918 (1980).
  68. T. S. Bunch and P. Panangaden, “On renormalization of λ⁢ϕ4𝜆superscriptitalic-ϕ4\lambda\phi^{4}italic_λ italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT field theory in curved space-time. II,” J. Phys. A 13, 919–932 (1980).
  69. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, New York, 1982).
  70. Leonard E. Parker and D. Toms, Quantum Field Theory in Curved Spacetime: Quantized Field and Gravity (Cambridge University Press, New York, 2009).
  71. Tommi Markkanen and Anders Tranberg, “A Simple Method for One-Loop Renormalization in Curved Space-Time,” JCAP 08, 045 (2013), arXiv:1303.0180 [hep-th] .
  72. David I. Kaiser, “Nonminimal Couplings in the Early Universe: Multifield Models of Inflation and the Latest Observations,” Fundam. Theor. Phys. 183, 41–57 (2016), arXiv:1511.09148 [astro-ph.CO] .
  73. Sergei D. Odintsov, “Renormalization Group, Effective Action and Grand Unification Theories in Curved Space-time,” Fortsch. Phys. 39, 621–641 (1991).
  74. David I. Kaiser, Edward A. Mazenc,  and Evangelos I. Sfakianakis, “Primordial Bispectrum from Multifield Inflation with Nonminimal Couplings,” Phys. Rev. D 87, 064004 (2013), arXiv:1210.7487 [astro-ph.CO] .
  75. David I. Kaiser and Evangelos I. Sfakianakis, ‘‘Multifield Inflation after Planck: The Case for Nonminimal Couplings,” Phys. Rev. Lett. 112, 011302 (2014), arXiv:1304.0363 [astro-ph.CO] .
  76. Katelin Schutz, Evangelos I. Sfakianakis,  and David I. Kaiser, “Multifield Inflation after Planck: Isocurvature Modes from Nonminimal Couplings,” Phys. Rev. D 89, 064044 (2014), arXiv:1310.8285 [astro-ph.CO] .
  77. Fedor L. Bezrukov and Mikhail Shaposhnikov, “The Standard Model Higgs boson as the inflaton,” Phys. Lett. B 659, 703–706 (2008), arXiv:0710.3755 [hep-th] .
  78. Shinsuke Kawai and Jinsu Kim, “Testing supersymmetric Higgs inflation with non-Gaussianity,” Phys. Rev. D 91, 045021 (2015), arXiv:1411.5188 [hep-ph] .
  79. Renata Kallosh and Andrei Linde, “Universality Class in Conformal Inflation,” JCAP 07, 002 (2013a), arXiv:1306.5220 [hep-th] .
  80. Renata Kallosh and Andrei Linde, “Non-minimal Inflationary Attractors,” JCAP 10, 033 (2013b), arXiv:1307.7938 [hep-th] .
  81. Mario Galante, Renata Kallosh, Andrei Linde,  and Diederik Roest, “Unity of Cosmological Inflation Attractors,” Phys. Rev. Lett. 114, 141302 (2015), arXiv:1412.3797 [hep-th] .
  82. F. Bezrukov, D. Gorbunov,  and M. Shaposhnikov, “On initial conditions for the Hot Big Bang,” JCAP 06, 029 (2009), arXiv:0812.3622 [hep-ph] .
  83. Juan Garcia-Bellido, Daniel G. Figueroa,  and Javier Rubio, “Preheating in the Standard Model with the Higgs-Inflaton coupled to gravity,” Phys. Rev. D 79, 063531 (2009), arXiv:0812.4624 [hep-ph] .
  84. Hillary L. Child, John T. Giblin, Jr, Raquel H. Ribeiro,  and David Seery, “Preheating with Non-Minimal Kinetic Terms,” Phys. Rev. Lett. 111, 051301 (2013), arXiv:1305.0561 [astro-ph.CO] .
  85. Matthew P. DeCross, David I. Kaiser, Anirudh Prabhu, C. Prescod-Weinstein,  and Evangelos I. Sfakianakis, “Preheating after Multifield Inflation with Nonminimal Couplings, I: Covariant Formalism and Attractor Behavior,” Phys. Rev. D 97, 023526 (2018a), arXiv:1510.08553 [astro-ph.CO] .
  86. Matthew P. DeCross, David I. Kaiser, Anirudh Prabhu, Chanda Prescod-Weinstein,  and Evangelos I. Sfakianakis, “Preheating after multifield inflation with nonminimal couplings, III: Dynamical spacetime results,” Phys. Rev. D 97, 023528 (2018b), arXiv:1610.08916 [astro-ph.CO] .
  87. Matthew P. DeCross, David I. Kaiser, Anirudh Prabhu, Chanda Prescod-Weinstein,  and Evangelos I. Sfakianakis, “Preheating after multifield inflation with nonminimal couplings, II: Resonance Structure,” Phys. Rev. D 97, 023527 (2018c), arXiv:1610.08868 [astro-ph.CO] .
  88. Daniel G. Figueroa and Christian T. Byrnes, “The Standard Model Higgs as the origin of the hot Big Bang,” Phys. Lett. B 767, 272–277 (2017), arXiv:1604.03905 [hep-ph] .
  89. Jo Repond and Javier Rubio, “Combined Preheating on the lattice with applications to Higgs inflation,” JCAP 07, 043 (2016), arXiv:1604.08238 [astro-ph.CO] .
  90. Yohei Ema, Ryusuke Jinno, Kyohei Mukaida,  and Kazunori Nakayama, “Violent Preheating in Inflation with Nonminimal Coupling,” JCAP 02, 045 (2017), arXiv:1609.05209 [hep-ph] .
  91. Evangelos I. Sfakianakis and Jorinde van de Vis, “Preheating after Higgs Inflation: Self-Resonance and Gauge boson production,” Phys. Rev. D 99, 083519 (2019), arXiv:1810.01304 [hep-ph] .
  92. Javier Rubio and Eemeli S. Tomberg, “Preheating in Palatini Higgs inflation,” JCAP 04, 021 (2019), arXiv:1902.10148 [hep-ph] .
  93. Rachel Nguyen, Jorinde van de Vis, Evangelos I. Sfakianakis, John T. Giblin,  and David I. Kaiser, “Nonlinear Dynamics of Preheating after Multifield Inflation with Nonminimal Couplings,” Phys. Rev. Lett. 123, 171301 (2019), arXiv:1905.12562 [hep-ph] .
  94. Jorinde van de Vis, Rachel Nguyen, Evangelos I. Sfakianakis, John T. Giblin,  and David I. Kaiser, “Time scales for nonlinear processes in preheating after multifield inflation with nonminimal couplings,” Phys. Rev. D 102, 043528 (2020), arXiv:2005.00433 [astro-ph.CO] .
  95. Yohei Ema, Ryusuke Jinno, Kazunori Nakayama,  and Jorinde van de Vis, “Preheating from target space curvature and unitarity violation: Analysis in field space,” Phys. Rev. D 103, 103536 (2021), arXiv:2102.12501 [hep-ph] .
  96. David I. Kaiser, “Conformal Transformations with Multiple Scalar Fields,” Phys. Rev. D 81, 084044 (2010), arXiv:1003.1159 [gr-qc] .
  97. Misao Sasaki and Ewan D. Stewart, “A General analytic formula for the spectral index of the density perturbations produced during inflation,” Prog. Theor. Phys. 95, 71–78 (1996), arXiv:astro-ph/9507001 .
  98. David Langlois and Sebastien Renaux-Petel, “Perturbations in generalized multi-field inflation,” JCAP 04, 017 (2008), arXiv:0801.1085 [hep-th] .
  99. Courtney M. Peterson and Max Tegmark, “Non-Gaussianity in Two-Field Inflation,” Phys. Rev. D 84, 023520 (2011a), arXiv:1011.6675 [astro-ph.CO] .
  100. Courtney M. Peterson and Max Tegmark, “Testing Two-Field Inflation,” Phys. Rev. D 83, 023522 (2011b), arXiv:1005.4056 [astro-ph.CO] .
  101. Jinn-Ouk Gong and Hyun Min Lee, “Large non-Gaussianity in non-minimal inflation,” JCAP 11, 040 (2011), arXiv:1105.0073 [hep-ph] .
  102. Jinn-Ouk Gong and Takahiro Tanaka, “A covariant approach to general field space metric in multi-field inflation,” JCAP 03, 015 (2011), [Erratum: JCAP 02, E01 (2012)], arXiv:1101.4809 [astro-ph.CO] .
  103. Jinn-Ouk Gong, ‘‘Multi-field inflation and cosmological perturbations,” Int. J. Mod. Phys. D 26, 1740003 (2016), arXiv:1606.06971 [gr-qc] .
  104. Christopher Gordon, David Wands, Bruce A. Bassett,  and Roy Maartens, “Adiabatic and entropy perturbations from inflation,” Phys. Rev. D 63, 023506 (2000), arXiv:astro-ph/0009131 .
  105. David Wands, Nicola Bartolo, Sabino Matarrese,  and Antonio Riotto, “An Observational test of two-field inflation,” Phys. Rev. D 66, 043520 (2002), arXiv:astro-ph/0205253 .
  106. Shu-Lin Cheng, Da-Shin Lee,  and Kin-Wang Ng, “Power spectrum of primordial perturbations during ultra-slow-roll inflation with back reaction effects,” Phys. Lett. B 827, 136956 (2022), arXiv:2106.09275 [astro-ph.CO] .
  107. Jason Kristiano and Jun’ichi Yokoyama, “Ruling Out Primordial Black Hole Formation From Single-Field Inflation,”   (2022), arXiv:2211.03395 [hep-th] .
  108. Jason Kristiano and Jun’ichi Yokoyama, “Response to criticism on ‘Ruling Out Primordial Black Hole Formation From Single-Field Inflation’: A note on bispectrum and one-loop correction in single-field inflation with primordial black hole formation,”  (2023), arXiv:2303.00341 [hep-th] .
  109. Sayantan Choudhury, Sudhakar Panda,  and M. Sami, “No-go for PBH formation in EFT of single field inflation,”   (2023b), arXiv:2302.05655 [astro-ph.CO] .
  110. Shu-Lin Cheng, Da-Shin Lee,  and Kin-Wang Ng, “Primordial perturbations from ultra-slow-roll single-field inflation with quantum loop effects,”   (2023), arXiv:2305.16810 [astro-ph.CO] .
  111. Leonardo Senatore and Matias Zaldarriaga, “On Loops in Inflation,” JHEP 12, 008 (2010), arXiv:0912.2734 [hep-th] .
  112. Leonardo Senatore and Matias Zaldarriaga, “On Loops in Inflation II: IR Effects in Single Clock Inflation,” JHEP 01, 109 (2013a), arXiv:1203.6354 [hep-th] .
  113. Guilherme L. Pimentel, Leonardo Senatore,  and Matias Zaldarriaga, “On Loops in Inflation III: Time Independence of zeta in Single Clock Inflation,” JHEP 07, 166 (2012), arXiv:1203.6651 [hep-th] .
  114. Leonardo Senatore and Matias Zaldarriaga, “The constancy of ζ𝜁\zetaitalic_ζ in single-clock Inflation at all loops,” JHEP 09, 148 (2013b), arXiv:1210.6048 [hep-th] .
  115. Kenta Ando and Vincent Vennin, “Power spectrum in stochastic inflation,” JCAP 04, 057 (2021), arXiv:2012.02031 [astro-ph.CO] .
  116. A. Riotto, “The Primordial Black Hole Formation from Single-Field Inflation is Still Not Ruled Out,”   (2023), arXiv:2303.01727 [astro-ph.CO] .
  117. Hassan Firouzjahi, “One-loop Corrections in Power Spectrum in Single Field Inflation,”   (2023), arXiv:2303.12025 [astro-ph.CO] .
  118. Hayato Motohashi and Yuichiro Tada, “Squeezed bispectrum and one-loop corrections in transient constant-roll inflation,”   (2023), arXiv:2303.16035 [astro-ph.CO] .
  119. Hassan Firouzjahi and Antonio Riotto, “Primordial Black Holes and Loops in Single-Field Inflation,”  (2023), arXiv:2304.07801 [astro-ph.CO] .
  120. Gabriele Franciolini, Antonio Iovino, Junior., Marco Taoso,  and Alfredo Urbano, “One loop to rule them all: Perturbativity in the presence of ultra slow-roll dynamics,”   (2023), arXiv:2305.03491 [astro-ph.CO] .
  121. Gianmassimo Tasinato, “A large |η|𝜂|\eta|| italic_η | approach to single field inflation,”  (2023), arXiv:2305.11568 [hep-th] .
  122. Evan McDonough and Marco Scalisi, “Inflation from Nilpotent Kähler Corrections,” JCAP 11, 028 (2016), arXiv:1609.00364 [hep-th] .
  123. Diederik Roest and Marco Scalisi, “Cosmological attractors from α𝛼\alphaitalic_α-scale supergravity,” Phys. Rev. D 92, 043525 (2015), arXiv:1503.07909 [hep-th] .
  124. Valerio Faraoni, “A Crucial ingredient of inflation,” Int. J. Theor. Phys. 40, 2259–2294 (2001), arXiv:hep-th/0009053 .
  125. Sebastien Clesse, Christophe Ringeval,  and Jonathan Rocher, “Fractal initial conditions and natural parameter values in hybrid inflation,” Phys. Rev. D 80, 123534 (2009), arXiv:0909.0402 [astro-ph.CO] .
  126. Evan McDonough, Alan H. Guth,  and David I. Kaiser, “Nonminimal Couplings and the Forgotten Field of Axion Inflation,”  (2020), arXiv:2010.04179 [hep-th] .
  127. Florian Kühnel, Cornelius Rampf,  and Marit Sandstad, “Effects of Critical Collapse on Primordial Black-Hole Mass Spectra,” Eur. Phys. J. C 76, 93 (2016), arXiv:1512.00488 [astro-ph.CO] .
  128. Sam Young, Ilia Musco,  and Christian T. Byrnes, “Primordial black hole formation and abundance: contribution from the non-linear relation between the density and curvature perturbation,” JCAP 11, 012 (2019), arXiv:1904.00984 [astro-ph.CO] .
  129. Alex Kehagias, Ilia Musco,  and Antonio Riotto, “Non-Gaussian Formation of Primordial Black Holes: Effects on the Threshold,” JCAP 12, 029 (2019), arXiv:1906.07135 [astro-ph.CO] .
  130. Albert Escrivà, Cristiano Germani,  and Ravi K. Sheth, “Universal threshold for primordial black hole formation,” Phys. Rev. D 101, 044022 (2020), arXiv:1907.13311 [gr-qc] .
  131. V. De Luca, G. Franciolini,  and A. Riotto, “On the Primordial Black Hole Mass Function for Broad Spectra,” Phys. Lett. B 807, 135550 (2020), arXiv:2001.04371 [astro-ph.CO] .
  132. Ilia Musco, Valerio De Luca, Gabriele Franciolini,  and Antonio Riotto, “Threshold for primordial black holes. II. A simple analytic prescription,” Phys. Rev. D 103, 063538 (2021), arXiv:2011.03014 [astro-ph.CO] .
  133. Jose María Ezquiaga, Juan García-Bellido,  and Vincent Vennin, “The exponential tail of inflationary fluctuations: consequences for primordial black holes,” JCAP 03, 029 (2020), arXiv:1912.05399 [astro-ph.CO] .
  134. Yuichiro Tada and Vincent Vennin, “Statistics of coarse-grained cosmological fields in stochastic inflation,” JCAP 02, 021 (2022), arXiv:2111.15280 [astro-ph.CO] .
  135. Matteo Biagetti, Valerio De Luca, Gabriele Franciolini, Alex Kehagias,  and Antonio Riotto, “The formation probability of primordial black holes,” Phys. Lett. B 820, 136602 (2021), arXiv:2105.07810 [astro-ph.CO] .
  136. Chiara Animali and Vincent Vennin, ‘‘Primordial black holes from stochastic tunnelling,”   (2022), arXiv:2210.03812 [astro-ph.CO] .
  137. Andrew D. Gow, Hooshyar Assadullahi, Joseph H. P. Jackson, Kazuya Koyama, Vincent Vennin,  and David Wands, “Non-perturbative non-Gaussianity and primordial black holes,”   (2022), arXiv:2211.08348 [astro-ph.CO] .
  138. Giacomo Ferrante, Gabriele Franciolini, Antonio Iovino, Junior.,  and Alfredo Urbano, “Primordial non-Gaussianity up to all orders: Theoretical aspects and implications for primordial black hole models,” Phys. Rev. D 107, 043520 (2023), arXiv:2211.01728 [astro-ph.CO] .
  139. Mustafa A. Amin, Mark P. Hertzberg, David I. Kaiser,  and Johanna Karouby, “Nonperturbative Dynamics Of Reheating After Inflation: A Review,” Int. J. Mod. Phys. D 24, 1530003 (2014), arXiv:1410.3808 [hep-ph] .
  140. Kishore N. Ananda, Chris Clarkson,  and David Wands, “The Cosmological gravitational wave background from primordial density perturbations,” Phys. Rev. D 75, 123518 (2007), arXiv:gr-qc/0612013 .
  141. Daniel Baumann, Paul J. Steinhardt, Keitaro Takahashi,  and Kiyotomo Ichiki, “Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations,” Phys. Rev. D 76, 084019 (2007), arXiv:hep-th/0703290 .
  142. Kazunori Kohri and Takahiro Terada, “Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations,” Phys. Rev. D 97, 123532 (2018), arXiv:1804.08577 [gr-qc] .
  143. Scott Dodelson and Lam Hui, “A Horizon ratio bound for inflationary fluctuations,” Phys. Rev. Lett. 91, 131301 (2003), arXiv:astro-ph/0305113 .
  144. Andrew R Liddle and Samuel M Leach, “How long before the end of inflation were observable perturbations produced?” Phys. Rev. D 68, 103503 (2003), arXiv:astro-ph/0305263 .
  145. Jérôme Martin and Lucas Pinol, “Opening the reheating box in multifield inflation,” JCAP 12, 022 (2021), arXiv:2105.03301 [astro-ph.CO] .
  146. Daniel G. Figueroa, Adrien Florio, Toby Opferkuch,  and Ben A. Stefanek, “Dynamics of Non-minimally Coupled Scalar Fields in the Jordan Frame,”   (2021b), arXiv:2112.08388 [astro-ph.CO] .
  147. Frédéric Dux, Adrien Florio, Juraj Klarić, Andrey Shkerin,  and Inar Timiryasov, “Preheating in Palatini Higgs inflation on the lattice,”   (2022), arXiv:2203.13286 [hep-ph] .
  148. Jérôme Martin, Christophe Ringeval,  and Vincent Vennin, “Information gain on reheating: The one bit milestone,” Phys. Rev. D 93, 103532 (2016).
  149. Kai Schmitz, “New Sensitivity Curves for Gravitational-Wave Signals from Cosmological Phase Transitions,” JHEP 01, 097 (2021), arXiv:2002.04615 [hep-ph] .
  150. Craig Cahillane and Georgia Mansell, “Review of the Advanced LIGO Gravitational Wave Observatories Leading to Observing Run Four,” Galaxies 10, 36 (2022), arXiv:2202.00847 [gr-qc] .
  151. Kent Yagi and Naoki Seto, “Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries,” Phys. Rev. D 83, 044011 (2011), [Erratum: Phys.Rev.D 95, 109901 (2017)], arXiv:1101.3940 [astro-ph.CO] .
  152. Eric Thrane and Joseph D. Romano, “Sensitivity curves for searches for gravitational-wave backgrounds,” Phys. Rev. D 88, 124032 (2013), arXiv:1310.5300 [astro-ph.IM] .
  153. Daniel Foreman-Mackey, David W. Hogg, Dustin Lang,  and Jonathan Goodman, “emcee: The MCMC Hammer,” Publications of the Astronomical Society of the Pacific 125, 306 (2013), arXiv:1202.3665 [astro-ph.IM] .
  154. Jonathan Goodman and Jonathan Weare, “Ensemble samplers with affine invariance,” Communications in Applied Mathematics and Computational Science 5, 65–80 (2010).
  155. Daniel Foreman-Mackey, “corner.py: Scatterplot matrices in python,” The Journal of Open Source Software 1, 24 (2016).
  156. Christian T. Byrnes, Edmund J. Copeland,  and Anne M. Green, “Primordial black holes as a tool for constraining non-Gaussianity,” Phys. Rev. D 86, 043512 (2012), arXiv:1206.4188 [astro-ph.CO] .
  157. Sam Young and Christian T. Byrnes, “Primordial black holes in non-Gaussian regimes,” JCAP 08, 052 (2013), arXiv:1307.4995 [astro-ph.CO] .
  158. Peter Athron and D. J. Miller, “A New Measure of Fine Tuning,” Phys. Rev. D 76, 075010 (2007), arXiv:0705.2241 [hep-ph] .
  159. Andrew Fowlie, “CMSSM, naturalness and the ‘fine-tuning price’ of the Very Large Hadron Collider,” Phys. Rev. D 90, 015010 (2014), arXiv:1403.3407 [hep-ph] .
  160. Kevork Abazajian et al., “CMB-S4 Science Case, Reference Design, and Project Plan,”   (2019), arXiv:1907.04473 [astro-ph.IM] .
  161. Kevork N. Abazajian et al. (CMB-S4), “CMB-S4 Science Book, First Edition,”   (2016), arXiv:1610.02743 [astro-ph.CO] .
  162. Philippa S. Cole, Andrew D. Gow, Christian T. Byrnes,  and Subodh P. Patil, “Primordial black holes from single-field inflation: a fine-tuning audit,”   (2023), arXiv:2304.01997 [astro-ph.CO] .
  163. William H. Kinney, “Horizon crossing and inflation with large eta,” Phys. Rev. D 72, 023515 (2005), arXiv:gr-qc/0503017 .
  164. Jerome Martin, Hayato Motohashi,  and Teruaki Suyama, “Ultra Slow-Roll Inflation and the non-Gaussianity Consistency Relation,” Phys. Rev. D 87, 023514 (2013), arXiv:1211.0083 [astro-ph.CO] .
  165. Jing Liu, Zong-Kuan Guo,  and Rong-Gen Cai, “Analytical approximation of the scalar spectrum in the ultraslow-roll inflationary models,” Phys. Rev. D 101, 083535 (2020), arXiv:2003.02075 [astro-ph.CO] .
  166. Philippa S. Cole, Andrew D. Gow, Christian T. Byrnes,  and Subodh P. Patil, “Steepest growth re-examined: repercussions for primordial black hole formation,”   (2022), arXiv:2204.07573 [astro-ph.CO] .
  167. Andrew D. Gow, Christian T. Byrnes, Philippa S. Cole,  and Sam Young, “The power spectrum on small scales: Robust constraints and comparing PBH methodologies,” JCAP 02, 002 (2021), arXiv:2008.03289 [astro-ph.CO] .
  168. Vicente Atal and Guillem Domènech, “Probing non-Gaussianities with the high frequency tail of induced gravitational waves,” JCAP 06, 001 (2021), arXiv:2103.01056 [astro-ph.CO] .
Citations (23)

Summary

  • The paper demonstrates that multifield inflation can produce PBHs as dark matter with modest fine-tuning, aligning analysis with Planck CMB constraints.
  • It employs a Markov Chain Monte Carlo approach to explore key parameters like the spectral index and tensor-to-scalar ratio in PBH formation.
  • The study forecasts detectable gravitational wave signals from second-order perturbations, suggesting upcoming experiments could empirically test the models.

Analysis of Primordial Black Hole Dark Matter in Multifield Inflation

This paper, authored by Wenzer Qin, Sarah R. Geller, Shyam Balaji, Evan McDonough, and David I. Kaiser, provides an in-depth exploration of the formation of Primordial Black Holes (PBHs) as a potential source of Dark Matter (DM) within the context of multifield inflation models. It leverages the coupling of multiple scalar fields to gravity, specifically analyzing the constraints PBH production imposes on inflation models given current Planck cosmic microwave background (CMB) data.

Key Findings and Methodology

  • Multifield Inflation Models: The paper focuses on models characterized by two scalar fields that are nonminimally coupled to gravity. These models are analyzed using a Markov Chain Monte Carlo (MCMC) approach to determine the viable regions of parameter space that can simultaneously satisfy the latest observational data.
  • CMB Constraints: The research emphasizes the constraints imposed by Planck 2018 data on several parameters, notably the amplitude of the primordial power spectrum (AsA_s), the spectral index (nsn_s), and the tensor-to-scalar ratio (rr). One of the principal conclusions is that nsn_s significantly influences the model parameters, shifting or compensating parameter changes within a 10%\sim 10\% margin.
  • Primordial Black Hole (PBH) Production: The paper identifies a degeneracy in the model parameter space that allows for the production of PBHs capable of constituting the observed DM abundance without highly precise fine-tuning, contrasting previous findings that necessitated ultra-specific adjustments for single-field models. This is accomplished while maintaining compliance with Planck CMB data.
  • Gravitational Waves (GWs): The authors extend their analysis to forecast observable signals from gravitational waves induced by second-order perturbations. Their predictions suggest that upcoming experiments like Advanced LIGO, Virgo, the Einstein Telescope, Cosmic Explorer, DECIGO, and LISA could detect these signals, thereby offering another layer of verification for the model.

Implications for Cosmology and Future Directions

The implications of this paper are multifaceted:

  1. Dark Matter Constituency: If PBHs are indeed a significant component of DM, understanding inflation dynamics is crucial for revealing the universe's structure formation and stability.
  2. Multifield Approach Benefits: The multifield inflation model appears less susceptible to exacting fine-tuning than single-field models, suggesting it as a viable candidate for PBH production scenarios.
  3. Observational Future: The anticipation of detectable GW signals marks a significant step toward empirical validation. These observations can refine constraints on inflationary models and further illuminate early universe physics.

Speculation and Future Research

Looking forward, the work sets the stage for detailed investigations into non-Gaussian effects on PBH models and their implications on reheating scenarios. Additionally, exploring multifield inflation with variances in field space and coupling dynamics could further establish the model’s robustness or reveal new pathways in understanding primordial cosmological processes. The interplay between small-scale physics (influencing PBH formation) and large-scale CMB measurements will continue to be a vital area of research as both theoretical and observational astrophysics evolve.

Youtube Logo Streamline Icon: https://streamlinehq.com