Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hayden-Preskill Recovery in Hamiltonian Systems (2303.02010v4)

Published 3 Mar 2023 in cond-mat.str-el, cond-mat.dis-nn, hep-th, and quant-ph

Abstract: Information scrambling refers to the unitary dynamics that quickly spreads and encodes localized quantum information over an entire many-body system and makes the information accessible from any small subsystem. While information scrambling is the key to understanding complex quantum many-body dynamics and is well-understood in random unitary models, it has been hardly explored in Hamiltonian systems. In this Letter, we investigate the information recovery in various time-independent Hamiltonian systems, including chaotic spin chains and Sachdev-Ye-Kitaev (SYK) models. We show that information recovery is possible in certain, but not all, chaotic models, which highlights the difference between information recovery and quantum chaos based on the energy spectrum or the out-of-time-ordered correlators. We also show that information recovery probes transitions caused by the change of information-theoretic features of the dynamics.

Citations (6)

Summary

We haven't generated a summary for this paper yet.