Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian CART models for insurance claims frequency (2303.01923v3)

Published 3 Mar 2023 in stat.ML, cs.LG, q-fin.ST, and stat.AP

Abstract: Accuracy and interpretability of a (non-life) insurance pricing model are essential qualities to ensure fair and transparent premiums for policy-holders, that reflect their risk. In recent years, the classification and regression trees (CARTs) and their ensembles have gained popularity in the actuarial literature, since they offer good prediction performance and are relatively easily interpretable. In this paper, we introduce Bayesian CART models for insurance pricing, with a particular focus on claims frequency modelling. Additionally to the common Poisson and negative binomial (NB) distributions used for claims frequency, we implement Bayesian CART for the zero-inflated Poisson (ZIP) distribution to address the difficulty arising from the imbalanced insurance claims data. To this end, we introduce a general MCMC algorithm using data augmentation methods for posterior tree exploration. We also introduce the deviance information criterion (DIC) for the tree model selection. The proposed models are able to identify trees which can better classify the policy-holders into risk groups. Some simulations and real insurance data will be discussed to illustrate the applicability of these models.

Citations (3)

Summary

We haven't generated a summary for this paper yet.