Learning-based Position and Stiffness Feedforward Control of Antagonistic Soft Pneumatic Actuators using Gaussian Processes (2303.01840v2)
Abstract: Variable stiffness actuator (VSA) designs are manifold. Conventional model-based control of these nonlinear systems is associated with high effort and design-dependent assumptions. In contrast, machine learning offers a promising alternative as models are trained on real measured data and nonlinearities are inherently taken into account. Our work presents a universal, learning-based approach for position and stiffness control of soft actuators. After introducing a soft pneumatic VSA, the model is learned with input-output data. For this purpose, a test bench was set up which enables automated measurement of the variable joint stiffness. During control, Gaussian processes are used to predict pressures for achieving desired position and stiffness. The feedforward error is on average 11.5% of the total pressure range and is compensated by feedback control. Experiments with the soft actuator show that the learning-based approach allows continuous adjustment of position and stiffness without model knowledge.
- J. Burgner-Kahrs, D. C. Rucker, and H. Choset, “Continuum robots for medical applications: A survey,” IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1261–1280, 2015.
- G. S. Chirikjian, “Theory and applications of hyper-redundant robotic manipulators,” Ph.D. dissertation, California Institute of Technology, 1992.
- N. Hogan, “Adaptive control of mechanical impedance by coactivation of antagonist muscles,” IEEE Transactions on Automatic Control, vol. 29, no. 8, pp. 681–690, 1984.
- K. Althoefer, “Antagonistic actuation and stiffness control in soft inflatable robots,” Nature Reviews Materials, vol. 3, no. 6, 2018.
- M. S. Xavier, C. D. Tawk, A. Zolfagharian, J. Pinskier, D. Howard, T. Young, J. Lai, S. M. Harrison, Y. K. Yong, M. Bodaghi, and A. J. Fleming, “Soft pneumatic actuators: A review of design, fabrication, modeling, sensing, control and applications,” IEEE Access, vol. 10, pp. 59 442–59 485, 2022.
- T. George Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, “Control strategies for soft robotic manipulators: A survey,” Soft robotics, vol. 5, no. 2, pp. 149–163, 2018.
- S. Wolf, G. Grioli, O. Eiberger, W. Friedl, M. Grebenstein, H. Hoppner, E. Burdet, D. G. Caldwell, R. Carloni, M. G. Catalano, D. Lefeber, S. Stramigioli, N. Tsagarakis, M. van Damme, R. van Ham, B. Vanderborght, L. C. Visser, A. Bicchi, and A. Albu-Schäffer, “Variable stiffness actuators: Review on design and components,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 5, pp. 2418–2430, 2016.
- B. Vanderborght, A. Albu-Schäffer, A. Bicchi, E. Burdet, D. G. Caldwell, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh, M. Garabini, M. Grebenstein, G. Grioli, S. Haddadin, H. Hoppner, A. Jafari, M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli, N. Tsagarakis, M. van Damme, R. van Ham, L. C. Visser, and S. Wolf, “Variable impedance actuators: A review,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1601–1614, 2013.
- A. de Luca and P. Lucibello, “A general algorithm for dynamic feedback linearization of robots with elastic joints,” in Proceedings / 1998 IEEE International Conference on Robotics and Automation, May 16 - 20, 1998, Katholieke Universiteit Leuven, Leuven, Belgium. Piscataway, NJ: IEEE Service Center, 1998, pp. 504–510.
- I. Sardellitti, G. Medrano-Cerda, N. G. Tsagarakis, A. Jafari, and D. G. Caldwell, “A position and stiffness control strategy for variable stiffness actuators,” in 2012 IEEE International Conference on Robotics and Automation. IEEE, 2012, pp. 2785–2791.
- M. Koehler, A. M. Okamura, and C. Duriez, “Stiffness control of deformable robots using finite element modeling,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 469–476, 2019.
- G. Tonietti and A. Bicchi, “Adaptive simultaneous position and stiffness control for a soft robot arm,” in IEEE/RSJ International Conference on Intelligent Robots and System. IEEE, 2002.
- M. Trumić, K. Jovanović, and A. Fagiolini, “Decoupled nonlinear adaptive control of position and stiffness for pneumatic soft robots,” The International Journal of Robotics Research, vol. 40, no. 1, pp. 277–295, 2021.
- C.-P. Chou and B. Hannaford, “Measurement and modeling of McKibben pneumatic artificial muscles,” IEEE Transactions on Robotics and Automation, vol. 12, no. 1, pp. 90–102, 1996.
- C. M. Best, L. Rupert, and M. D. Killpack, “Comparing model-based control methods for simultaneous stiffness and position control of inflatable soft robots,” The International Journal of Robotics Research, vol. 40, no. 1, pp. 470–493, 2021.
- N. S. Usevitch, A. M. Okamura, and E. W. Hawkes, “APAM: Antagonistic pneumatic artificial muscle,” in 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018.
- E. H. Skorina, M. Luo, S. Ozel, F. Chen, W. Tao, and C. D. Onal, “Feedforward augmented sliding mode motion control of antagonistic soft pneumatic actuators,” in 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015, pp. 2544–2549.
- L. Manfredi, L. Yue, J. Zhang, and A. Cuschieri, “A 4 DOFs variable stiffness soft module,” in 2018 IEEE International Conference on Soft Robotics (RoboSoft). IEEE, 2018, pp. 94–99.
- X. Wang, Y. Li, and K.-W. Kwok, “A survey for machine learning-based control of continuum robots,” Frontiers in Robotics and AI, vol. 8, p. 730330, 2021.
- Y. Ansari, M. Manti, E. Falotico, M. Cianchetti, and C. Laschi, “Multiobjective optimization for stiffness and position control in a soft robot arm module,” IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 108–115, 2018.
- T. Luong, K. Kim, S. Seo, J. Jeon, C. Park, M. Doh, J. C. Koo, H. R. Choi, and H. Moon, “Long short term memory model based position-stiffness control of antagonistically driven twisted-coiled polymer actuators using model predictive control,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 4141–4148, 2021.
- F. Angelini, C. Della Santina, M. Garabini, M. Bianchi, G. M. Gasparri, G. Grioli, M. G. Catalano, and A. Bicchi, “Decentralized trajectory tracking control for soft robots interacting with the environment,” IEEE Transactions on Robotics, vol. 34, no. 4, 2018.
- R. Mengacci, F. Angelini, M. G. Catalano, G. Grioli, A. Bicchi, and M. Garabini, “On the motion/stiffness decoupling property of articulated soft robots with application to model-free torque iterative learning control,” The International Journal of Robotics Research, vol. 40, no. 1, pp. 348–374, 2021.
- G. Grioli, S. Wolf, M. Garabini, M. Catalano, E. Burdet, D. Caldwell, R. Carloni, W. Friedl, M. Grebenstein, M. Laffranchi, D. Lefeber, S. Stramigioli, N. Tsagarakis, M. van Damme, B. Vanderborght, A. Albu-Schäffer, and A. Bicchi, “Variable stiffness actuators: The user’s point of view,” The International Journal of Robotics Research, vol. 34, no. 6, pp. 727–743, 2015.
- B. Z. Lukic, K. M. Jovanovic, and G. S. Kvasccev, “Feedforward neural network for controlling qbmove maker pro variable stiffness actuator,” in 2016 13th Symposium on Neural Networks and Applications (NEUREL). IEEE, 2016, pp. 1–4.
- M. Hofer and R. D’Andrea, “Design, fabrication, modeling and control of a fabric-based spherical robotic arm,” Mechatronics, vol. 68, 2020.
- C. Della Santina, M. Bianchi, G. Grioli, F. Angelini, M. Catalano, M. Garabini, and A. Bicchi, “Controlling soft robots: Balancing feedback and feedforward elements,” IEEE Robotics & Automation Magazine, vol. 24, no. 3, pp. 75–83, 2017.
- D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a survey,” Cognitive processing, vol. 12, no. 4, pp. 319–340, 2011.
- GPy, “GPy: A Gaussian process framework in python,” 2012. [Online]. Available: http://github.com/SheffieldML/GPy
- G. Grioli and A. Bicchi, “A non-invasive, real-time method for measuring variable stiffness,” in Robotics Science and Systems VI, 2010, pp. 90–96.
- G. K. Klute and B. Hannaford, “Fatigue characteristics of McKibben artificial muscle actuators,” in Innovations in theory, practice and applications. IEEE, 1998, pp. 1776–1781.
- A. Fagiolini, M. Trumic, and K. Jovanovic, “An input observer-based stiffness estimation approach for flexible robot joints,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1843–1850, 2020.
- M. Trumic, G. Grioli, K. Jovanovic, and A. Fagiolini, “Force/torque-sensorless joint stiffness estimation in articulated soft robots,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7036–7043, 2022.