Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Application of fused graphical lasso to statistical inference for multiple sparse precision matrices (2303.01326v1)

Published 2 Mar 2023 in math.ST and stat.TH

Abstract: In this paper, the fused graphical lasso (FGL) method is used to estimate multiple precision matrices from multiple populations simultaneously. The lasso penalty in the FGL model is a restraint on sparsity of precision matrices, and a moderate penalty on the two precision matrices from distinct groups restrains the similar structure across multiple groups. In high-dimensional settings, an oracle inequality is provided for FGL estimators, which is necessary to establish the central limit law. We not only focus on point estimation of a precision matrix, but also work on hypothesis testing for a linear combination of the entries of multiple precision matrices. Inspired by Jankova a and van de Geer [confidence intervals for high-dimensional inverse covariance estimation, Electron. J. Stat. 9(1) (2015) 1205-1229.], who investigated a de-biasing technology to obtain a new consistent estimator with known distribution for implementing the statistical inference, we extend the statistical inference problem to multiple populations, and propose the de-biasing FGL estimators. The corresponding asymptotic property of de-biasing FGL estimators is provided. A simulation study shows that the proposed test works well in high-dimensional situations.

Summary

We haven't generated a summary for this paper yet.