Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bivariate beta distribution: parameter inference and diagnostics

Published 2 Mar 2023 in stat.ME and stat.CO | (2303.01271v1)

Abstract: Correlated proportions appear in many real-world applications and present a unique challenge in terms of finding an appropriate probabilistic model due to their constrained nature. The bivariate beta is a natural extension of the well-known beta distribution to the space of correlated quantities on $[0, 1]2$. Its construction is not unique, however. Over the years, many bivariate beta distributions have been proposed, ranging from three to eight or more parameters, and for which the joint density and distribution moments vary in terms of mathematical tractability. In this paper, we investigate the construction proposed by Olkin & Trikalinos (2015), which strikes a balance between parameter-richness and tractability. We provide classical (frequentist) and Bayesian approaches to estimation in the form of method-of-moments and latent variable/data augmentation coupled with Hamiltonian Monte Carlo, respectively. The elicitation of bivariate beta as a prior distribution is also discussed. The development of diagnostics for checking model fit and adequacy is explored in depth with the aid of Monte Carlo experiments under both well-specified and misspecified data-generating settings. Keywords: Bayesian estimation; bivariate beta; correlated proportions; diagnostics; method of moments.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.