Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analyzing Effects of Fake Training Data on the Performance of Deep Learning Systems (2303.01268v1)

Published 2 Mar 2023 in cs.CV and cs.AI

Abstract: Deep learning models frequently suffer from various problems such as class imbalance and lack of robustness to distribution shift. It is often difficult to find data suitable for training beyond the available benchmarks. This is especially the case for computer vision models. However, with the advent of Generative Adversarial Networks (GANs), it is now possible to generate high-quality synthetic data. This synthetic data can be used to alleviate some of the challenges faced by deep learning models. In this work we present a detailed analysis of the effect of training computer vision models using different proportions of synthetic data along with real (organic) data. We analyze the effect that various quantities of synthetic data, when mixed with original data, can have on a model's robustness to out-of-distribution data and the general quality of predictions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Pratinav Seth (16 papers)
  2. Akshat Bhandari (4 papers)
  3. Kumud Lakara (5 papers)