Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Redundancy Management for Fast Service (Rates) in Edge Computing Systems (2303.00486v3)

Published 1 Mar 2023 in cs.DC, cs.IT, and math.IT

Abstract: Edge computing operates between the cloud and end users and strives to provide low-latency computing services for simultaneous users. Redundant use of multiple edge nodes can reduce latency, as edge systems often operate in uncertain environments. However, since edge systems have limited computing and storage resources, directing more resources to some computing jobs will either block the execution of others or pass their execution to the cloud, thus increasing latency. This paper uses the average system computing time and blocking probability to evaluate edge system performance and analyzes the optimal resource allocation accordingly. We also propose blocking probability and average system time optimization algorithms. Simulation results show that both algorithms significantly outperform the benchmark for different service time distributions and show how the optimal replication factor changes with varying parameters of the system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. P. Peng and E. Soljanin, “Computing redundancy in blocking systems: Fast service or no service,” in Fifteenth International Conference on Wireless Communications and Signal Processing (WCSP), 2023.
  2. W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,” IEEE Internet of Things J., vol. 3, pp. 637–646, 2016.
  3. Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: The communication perspective,” IEEE communications surveys & tutorials, vol. 19, pp. 2322–2358, 2017.
  4. H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for the internet of things with edge computing,” IEEE network, vol. 32, no. 1, pp. 96–101, 2018.
  5. J. Hochstetler, R. Padidela, Q. Chen, Q. Yang, and S. Fu, “Embedded deep learning for vehicular edge computing,” in 2018 IEEE/ACM Symposium on Edge Computing (SEC).   IEEE, 2018, pp. 341–343.
  6. B. Li, P. Chen, H. Liu, W. Guo, X. Cao, J. Du, C. Zhao, and J. Zhang, “Random sketch learning for deep neural networks in edge computing,” Nature Computational Science, vol. 1, no. 3, pp. 221–228, 2021.
  7. C. C. Byers, “Architectural imperatives for fog computing: Use cases, requirements, and architectural techniques for fog-enabled iot networks,” IEEE Communications Magazine, vol. 55, no. 8, pp. 14–20, 2017.
  8. S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and applications,” in 2015 Third IEEE workshop on hot topics in web systems and technologies (HotWeb).   IEEE, 2015, pp. 73–78.
  9. M. Chiang and T. Zhang, “Fog and iot: An overview of research opportunities,” IEEE Internet of things journal, vol. 3, no. 6, pp. 854–864, 2016.
  10. R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A taxonomy, survey and future directions,” Internet of Everything: Algorithms, Methodologies, Technologies and Perspectives, pp. 103–130, 2018.
  11. M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50, no. 1, pp. 30–39, 2017.
  12. D. Wang, G. Joshi, and G. Wornell, “Using straggler replication to reduce latency in large-scale parallel comp. ” ACM SIGMETRICS Perform. Eval. Rev., vol. 43, no. 3, pp. 7–11, 2015.
  13. K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up distributed machine learning using codes,” IEEE Trans. on Inform. Theory, vol. 64, no. 3, pp. 1514–1529, 2017.
  14. C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A. Polakos, “A comprehensive survey on fog computing: State-of-the-art and research challenges,” IEEE communications surveys & tutorials, vol. 20, no. 1, pp. 416–464, 2017.
  15. P. Peng, M. Noori, and E. Soljanin, “Distributed storage allocations for optimal service rates,” IEEE Trans. on Communications, vol. 69, no. 10, pp. 6647–6660, 2021.
  16. M. Aktaş, G. Joshi, S. Kadhe, F. Kazemi, and E. Soljanin, “Service rate region: A new aspect of coded distributed system design,” IEEE Trans. on Information Theory, vol. 67, no. 12, pp. 7940–7963, 2021.
  17. U. Saleem, Y. Liu, S. Jangsher, Y. Li, and T. Jiang, “Mobility-aware joint task scheduling and resource allocation for cooperative mobile edge computing,” IEEE Trans. on Wireless Communications, vol. 20, no. 1, pp. 360–374, 2020.
  18. J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation task scheduling for mobile-edge computing systems,” in 2016 IEEE Internat. Symp. on Inform. Theory (ISIT).   IEEE, 2016, pp. 1451–1455.
  19. T. Zhu, T. Shi, J. Li, Z. Cai, and X. Zhou, “Task scheduling in deadline-aware mobile edge computing systems,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4854–4866, 2018.
  20. C.-F. Liu, M. Bennis, and H. V. Poor, “Latency and reliability-aware task offloading and resource allocation for mobile edge computing,” in 2017 IEEE Globecom Workshops (GC Wkshps).   IEEE, 2017, pp. 1–7.
  21. S. Kiani, N. Ferdinand, and S. C. Draper, “Exploitation of stragglers in coded computation,” in 2018 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2018, pp. 1988–1992.
  22. E. Ozfatura, D. Gündüz, and S. Ulukus, “Speeding up distributed gradient descent by utilizing non-persistent stragglers,” in 2019 IEEE Internat. Symposium on Information Theory (ISIT), 2019.
  23. J. Zhang and O. Simeone, “On model coding for distributed inference and transmission in mobile edge computing systems,” IEEE Communications Letters, vol. 23, no. 6, pp. 1065–1068, 2019.
  24. J. Wang, C. Cao, J. Wang, K. Lu, A. Jukan, and W. Zhao, “Optimal task allocation and coding design for secure edge computing with heterogeneous edge devices,” IEEE Trans. on Cloud Computing, 2021.
  25. Y. Han, D. Niyato, C. Leung, C. Miao, and D. I. Kim, “Dynamics in coded edge computing for iot: A fractional evolutionary game approach,” IEEE Internet of Things Journal, 2022.
  26. T. Choudhury, W. Wang, and G. Joshi, “Tackling heterogeneous traffic in multi-access systems via erasure coded servers,” in Proceedings of the Twenty-Third International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, 2022, pp. 171–180.
  27. M. F. Aktas and E. Soljanin, “Straggler mitigation at scale,” IEEE/ACM Trans. Netw., vol. 27, no. 6, pp. 2266–2279, 2019.
  28. P. Peng, E. Soljanin, and P. Whiting, “Diversity/parallelism trade-off in distributed systems with redundancy,” IEEE Trans. on Information Theory, vol. 68, no. 2, pp. 1279–1295, 2021.
  29. B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained resource sharing in the data center,” in NSDI, vol. 11, 2011, pp. 22–22.
  30. S. Chen, Q. Li, M. Zhou, and A. Abusorrah, “Recent advances in collaborative scheduling of computing tasks in an edge computing paradigm,” Sensors, vol. 21, no. 3, p. 779, 2021.
  31. Q. Fan and N. Ansari, “Application aware workload allocation for edge computing-based iot,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 2146–2153, 2018.
  32. L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for energy-constrained mobile edge computing in small-cell networks,” IEEE/ACM transactions on networking, vol. 26, no. 4, pp. 1619–1632, 2018.
  33. K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyytia, “Reducing latency via redundant requests: Exact analysis,” ACM SIGMETRICS Performance Evaluation Review, vol. 43, pp. 347–360, 2015.
  34. R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for secure coded computing using secret sharing via staircase codes,” IEEE Trans. on Communications, 2020.
  35. G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage trade-off in content download from coded distributed storage systems,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 5, pp. 989–997, 2014.
  36. G. Joshi, E. Soljanin, and G. W. Wornell, “Efficient redundancy techniques for latency reduction in cloud systems,” TOMPECS, vol. 2, no. 2, pp. 12:1–12:30, 2017.
  37. S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear transforms distributedly using coded short dot products,” Advances in Neural Information Processing Systems, vol. 29, pp. 2100–2108, 2016.
  38. P. Peng, E. Soljanin, and P. Whiting, “Diversity vs. parallelism in distributed computing with redundancy,” in IEEE International Symposium on Information Theory, ISIT 2020, Los Angeles, CA, USA, June 21-26, 2020, pp. 257–262.

Summary

We haven't generated a summary for this paper yet.