Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerated Primal-dual Scheme for a Class of Stochastic Nonconvex-concave Saddle Point Problems (2303.00211v2)

Published 1 Mar 2023 in math.OC

Abstract: Stochastic nonconvex-concave min-max saddle point problems appear in many machine learning and control problems including distributionally robust optimization, generative adversarial networks, and adversarial learning. In this paper, we consider a class of nonconvex saddle point problems where the objective function satisfies the Polyak-{\L}ojasiewicz condition with respect to the minimization variable and it is concave with respect to the maximization variable. The existing methods for solving nonconvex-concave saddle point problems often suffer from slow convergence and/or contain multiple loops. Our main contribution lies in proposing a novel single-loop accelerated primal-dual algorithm with new convergence rate results appearing for the first time in the literature, to the best of our knowledge. In particular, in the stochastic regime, we demonstrate a convergence rate of $\mathcal O(\epsilon{-4})$ to find an $\epsilon$-gap solution which can be improved to $\mathcal O(\epsilon{-2})$ in deterministic setting.

Summary

We haven't generated a summary for this paper yet.