Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computational expressivity of (circular) proofs with fixed points (2302.14825v2)

Published 28 Feb 2023 in cs.LO

Abstract: We study the computational expressivity of proof systems with fixed point operators, within the proofs-as-programs' paradigm. We start with a calculus $\mu\mathsf{LJ}$ (due to Clairambault) that extends intuitionistic logic by least and greatest positive fixed points. Based in the sequent calculus, $\mu\mathsf{LJ}$ admits a standard extension to acircular' calculus $\mathsf{C}\mu\mathsf{LJ}$. Our main result is that, perhaps surprisingly, both $\mu\mathsf{LJ}$ and $\mathsf{C}\mu\mathsf{LJ}$ represent the same first-order functions: those provably total in $\Pi1_2$-$\mathsf{CA}_0$, a subsystem of second-order arithmetic beyond the `big five' of reverse mathematics and one of the strongest theories for which we have an ordinal analysis (due to Rathjen). This solves various questions in the literature on the computational strength of (circular) proof systems with fixed points. For the lower bound we give a realisability interpretation from an extension of Peano Arithmetic by fixed points that has been shown to be arithmetically equivalent to $\Pi1_2$-$\mathsf{CA}_0$ (due to M\"ollerfeld). For the upper bound we construct a novel computability model in order to give a totality argument for circular proofs with fixed points. In fact we formalise this argument itself within $\Pi1_2$-$\mathsf{CA}_0$ in order to obtain the tight bounds we are after. Along the way we develop some novel reverse mathematics for the Knaster-Tarski fixed point theorem.

Citations (1)

Summary

We haven't generated a summary for this paper yet.