Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Classification with Hierarchical Scalable Query on Fusion Transformer (2302.14487v1)

Published 28 Feb 2023 in cs.CV and cs.AI

Abstract: Real-world vision based applications require fine-grained classification for various area of interest like e-commerce, mobile applications, warehouse management, etc. where reducing the severity of mistakes and improving the classification accuracy is of utmost importance. This paper proposes a method to boost fine-grained classification through a hierarchical approach via learnable independent query embeddings. This is achieved through a classification network that uses coarse class predictions to improve the fine class accuracy in a stage-wise sequential manner. We exploit the idea of hierarchy to learn query embeddings that are scalable across all levels, thus making this a relevant approach even for extreme classification where we have a large number of classes. The query is initialized with a weighted Eigen image calculated from training samples to best represent and capture the variance of the object. We introduce transformer blocks to fuse intermediate layers at which query attention happens to enhance the spatial representation of feature maps at different scales. This multi-scale fusion helps improve the accuracy of small-size objects. We propose a two-fold approach for the unique representation of learnable queries. First, at each hierarchical level, we leverage cluster based loss that ensures maximum separation between inter-class query embeddings and helps learn a better (query) representation in higher dimensional spaces. Second, we fuse coarse level queries with finer level queries weighted by a learned scale factor. We additionally introduce a novel block called Cross Attention on Multi-level queries with Prior (CAMP) Block that helps reduce error propagation from coarse level to finer level, which is a common problem in all hierarchical classifiers. Our method is able to outperform the existing methods with an improvement of ~11% at the fine-grained classification.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Sudeep Kumar Sahoo (2 papers)
  2. Sathish Chalasani (2 papers)
  3. Abhishek Joshi (17 papers)
  4. Kiran Nanjunda Iyer (2 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.