Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reconstruction-based Out-of-Distribution Detection for Short-Range FMCW Radar (2302.14192v2)

Published 27 Feb 2023 in eess.SP and cs.LG

Abstract: Out-of-distribution (OOD) detection recently has drawn attention due to its critical role in the safe deployment of modern neural network architectures in real-world applications. The OOD detectors aim to distinguish samples that lie outside the training distribution in order to avoid the overconfident predictions of machine learning models on OOD data. Existing detectors, which mainly rely on the logit, intermediate feature space, softmax score, or reconstruction loss, manage to produce promising results. However, most of these methods are developed for the image domain. In this study, we propose a novel reconstruction-based OOD detector to operate on the radar domain. Our method exploits an autoencoder (AE) and its latent representation to detect the OOD samples. We propose two scores incorporating the patch-based reconstruction loss and the energy value calculated from the latent representations of each patch. We achieve an AUROC of 90.72% on our dataset collected by using 60 GHz short-range FMCW Radar. The experiments demonstrate that, in terms of AUROC and AUPR, our method outperforms the baseline (AE) and the other state-of-the-art methods. Also, thanks to its model size of 641 kB, our detector is suitable for embedded usage.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. J. Yang, K. Zhou, and Z. Liu, “Full-spectrum out-of-distribution detection,” arXiv, 2022.
  2. H. Wang, Z. Li, L. Feng, and W. Zhang, “Vim: Out-of-distribution with virtual-logit matching,” arXiv, 2022.
  3. X. Du, Z. Wang, M. Cai, and Y. Li, “Vos: Learning what you don’t know by virtual outlier synthesis,” Proceedings of the International Conference on Learning Representations, 2022.
  4. J. Yang, H. Wang, L. Feng, X. Yan, H. Zheng, W. Zhang, and Z. Liu, “Semantically coherent out-of-distribution detection,” in Proceedings of the IEEE International Conference on Computer Vision, 2021.
  5. Y. Sun, C. Guo, and Y. Li, “React: Out-of-distribution detection with rectified activations,” in Advances in Neural Information Processing Systems, 2021.
  6. R. Huang and Y. Li, “Mos: Towards scaling out-of-distribution detection for large semantic space,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.
  7. Y. C. Hsu, Y. Shen, H. Jin, and Z. Kira, “Generalized odin: Detecting out-of-distribution image without learning from out-of-distribution data,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10948–10957, 2020.
  8. Y. Sun, Y. Ming, X. Zhu, and Y. Li, “Out-of-distribution detection with deep nearest neighbors,” in International Conference on Machine Learning (ICML), PMLR, 2022.
  9. N. Regev and D. Wulich, “Radar-based, simultaneous human presence detection and breathing rate estimation,” Sensors, vol. 21, no. 10, 2021.
  10. P. Vaishnav and A. Santra, “Continuous human activity classification with unscented kalman filter tracking using fmcw radar,” IEEE Sensors Letters, vol. 4, no. 5, pp. 1–4, 2020.
  11. S. Hazra and A. Santra, “Robust gesture recognition using millimetric-wave radar system,” IEEE Sensors Letters, vol. 2, no. 4, pp. 1–4, 2018.
  12. W. Takabatake, K. Yamamoto, K. Toyoda, T. Ohtsuki, Y. Shibata, and A. Nagate, “Fmcw radar-based anomaly detection in toilet by supervised machine learning classifier,” in 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, 2019.
  13. D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and out-of-distribution examples in neural networks,” Proceedings of International Conference on Learning Representations, 2017.
  14. S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-distribution image detection in neural networks,” in International Conference on Learning Representations, 2018.
  15. W. Liu, X. Wang, J. Owens, and Y. Li, “Energy-based out-of-distribution detection,” in Advances in Neural Information Processing Systems, vol. 33, pp. 21464–21475, Curran Associates, Inc., 2020.
  16. K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for detecting out-of-distribution samples and adversarial attacks,” in Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18, (Red Hook, NY, USA), p. 7167–7177, Curran Associates Inc., 2018.
  17. C. S. Sastry and S. Oore, “Detecting out-of-distribution examples with Gram matrices,” in Proceedings of the 37th International Conference on Machine Learning, vol. 119 of Proceedings of Machine Learning Research, pp. 8491–8501, PMLR, 13–18 Jul 2020.
  18. H. Huang, Z. Li, L. Wang, S. Chen, B. Dong, and X. Zhou, “Feature space singularity for out-of-distribution detection,” in Proceedings of the Workshop on Artificial Intelligence Safety 2021 (SafeAI 2021), 2021.
  19. B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable predictive uncertainty estimation using deep ensembles,” in Advances in Neural Information Processing Systems, vol. 30, Curran Associates, Inc., 2017.
  20. D. Hendrycks, M. Mazeika, and T. Dietterich, “Deep anomaly detection with outlier exposure,” in International Conference on Learning Representations, 2019.
  21. Q. Yu and K. Aizawa, “Unsupervised out-of-distribution detection by maximum classifier discrepancy,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.
  22. A.-A. Papadopoulos, M. R. Rajati, N. Shaikh, and J. Wang, “Outlier exposure with confidence control for out-of-distribution detection,” Neurocomputing, vol. 441, pp. 138–150, 2021.
  23. K. Lee, H. Lee, K. Lee, and J. Shin, “Training confidence-calibrated classifiers for detecting out-of-distribution samples,” arXiv, 2017.
  24. X. Huang, Y. Li, O. Poursaeed, J. Hopcroft, and S. Belongie, “Stacked generative adversarial networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1866–1875, 2017.
  25. P. Kirichenko, P. Izmailov, and A. G. Wilson, “Why normalizing flows fail to detect out-of-distribution data,” in Advances in Neural Information Processing Systems, vol. 33, pp. 20578–20589, Curran Associates, Inc., 2020.
  26. R. Huang, A. Geng, and Y. Li, “On the importance of gradients for detecting distributional shifts in the wild,” in Advances in Neural Information Processing Systems, 2021.
  27. T. Denouden, R. Salay, K. Czarnecki, V. Abdelzad, B. Phan, and S. Vernekar, “Improving reconstruction autoencoder out-of-distribution detection with mahalanobis distance,” arXiv, 2018.
  28. Z. Xiao, Q. Yan, and Y. Amit, “Likelihood regret: An out-of-distribution detection score for variational auto-encoder,” in Advances in Neural Information Processing Systems, vol. 33, pp. 20685–20696, Curran Associates, Inc., 2020.
  29. A. R. Venkatakrishnan, S. T. Kim, R. Eisawy, F. Pfister, and N. Navab, “Self-supervised out-of-distribution detection in brain ct scans,” arXiv, 2020.
  30. D. Hendrycks, X. Liu, E. Wallace, A. Dziedzic, R. Krishnan, and D. Song, “Pretrained transformers improve out-of-distribution robustness,” arXiv, 2020.
  31. S. Fort, J. Ren, and B. Lakshminarayanan, “Exploring the limits of out-of-distribution detection,” arXiv, 2021.
  32. R. Koner, P. Sinhamahapatra, K. Roscher, S. Günnemann, and V. Tresp, “Oodformer: Out-of-distribution detection transformer,” arXiv, 2021.
  33. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv, 2020.
  34. M. Bauw, S. Velasco-Forero, J. Angulo, C. Adnet, and O. Airiau, “Near out-of-distribution detection for low-resolution radar micro-doppler signatures,” 2022.
  35. M. Bauw, S. Velasco-Forero, J. Angulo, C. Adnet, and O. Airiau, “Near out-of-distribution detection for low-resolution radar micro-doppler signatures,” arXiv, 2022.
  36. J.-W. Choi, C.-W. Park, and J.-H. Kim, “Fmcw radar-based real-time hand gesture recognition system capable of out-of-distribution detection,” IEEE Access, vol. 10, pp. 87425–87434, 2022.
  37. J. Ott, L. Servadei, G. Mauro, T. Stadelmayer, A. Santra, and R. Wille, “Uncertainty-based meta-reinforcement learning for robust radar tracking,” ICMLA, 2022.
  38. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
  39. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CoRR, vol. abs/1512.03385, 2015.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sabri Mustafa Kahya (7 papers)
  2. Muhammet Sami Yavuz (7 papers)
  3. Eckehard Steinbach (29 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.