Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Injectivity of ReLU networks: perspectives from statistical physics (2302.14112v2)

Published 27 Feb 2023 in cond-mat.dis-nn, cs.LG, math.PR, and stat.ML

Abstract: When can the input of a ReLU neural network be inferred from its output? In other words, when is the network injective? We consider a single layer, $x \mapsto \mathrm{ReLU}(Wx)$, with a random Gaussian $m \times n$ matrix $W$, in a high-dimensional setting where $n, m \to \infty$. Recent work connects this problem to spherical integral geometry giving rise to a conjectured sharp injectivity threshold for $\alpha = \frac{m}{n}$ by studying the expected Euler characteristic of a certain random set. We adopt a different perspective and show that injectivity is equivalent to a property of the ground state of the spherical perceptron, an important spin glass model in statistical physics. By leveraging the (non-rigorous) replica symmetry-breaking theory, we derive analytical equations for the threshold whose solution is at odds with that from the Euler characteristic. Furthermore, we use Gordon's min--max theorem to prove that a replica-symmetric upper bound refutes the Euler characteristic prediction. Along the way we aim to give a tutorial-style introduction to key ideas from statistical physics in an effort to make the exposition accessible to a broad audience. Our analysis establishes a connection between spin glasses and integral geometry but leaves open the problem of explaining the discrepancies.

Citations (2)

Summary

We haven't generated a summary for this paper yet.