Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Connectivity Optimized Nested Graph Networks for Crystal Structures (2302.14102v2)

Published 27 Feb 2023 in cs.LG, cond-mat.mtrl-sci, and physics.chem-ph

Abstract: Graph neural networks (GNNs) have been applied to a large variety of applications in materials science and chemistry. Here, we recapitulate the graph construction for crystalline (periodic) materials and investigate its impact on the GNNs model performance. We suggest the asymmetric unit cell as a representation to reduce the number of atoms by using all symmetries of the system. This substantially reduced the computational cost and thus time needed to train large graph neural networks without any loss in accuracy. Furthermore, with a simple but systematically built GNN architecture based on message passing and line graph templates, we introduce a general architecture (Nested Graph Network, NGN) that is applicable to a wide range of tasks. We show that our suggested models systematically improve state-of-the-art results across all tasks within the MatBench benchmark. Further analysis shows that optimized connectivity and deeper message functions are responsible for the improvement. Asymmetric unit cells and connectivity optimization can be generally applied to (crystal) graph networks, while our suggested nested graph framework will open new ways of systematic comparison of GNN architectures.

Citations (10)

Summary

We haven't generated a summary for this paper yet.