Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Sparse Streaming Feature Selection Using Adapted Classification (2302.14056v1)

Published 25 Feb 2023 in cs.LG and cs.AI

Abstract: Traditional feature selections need to know the feature space before learning, and online streaming feature selection (OSFS) is proposed to process streaming features on the fly. Existing methods divide features into relevance or irrelevance without missing data, and deleting irrelevant features may lead to in-formation loss. Motivated by this, we focus on completing the streaming feature matrix and division of feature correlation and propose online sparse streaming feature selection based on adapted classification (OS2FS-AC). This study uses Latent Factor Analysis (LFA) to pre-estimate missed data. Besides, we use the adaptive method to obtain the threshold, divide the features into strongly relevant, weakly relevant, and irrelevant features, and then divide weak relevance with more information. Experimental results on ten real-world data sets demonstrate that OS2FS-AC performs better than state-of-the-art algo-rithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Di Wu (477 papers)
  2. Xin Luo (94 papers)
  3. Ruiyang Xu (15 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.