Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepSeq: Deep Sequential Circuit Learning (2302.13608v2)

Published 27 Feb 2023 in cs.LG and cs.AI

Abstract: Circuit representation learning is a promising research direction in the electronic design automation (EDA) field. With sufficient data for pre-training, the learned general yet effective representation can help to solve multiple downstream EDA tasks by fine-tuning it on a small set of task-related data. However, existing solutions only target combinational circuits, significantly limiting their applications. In this work, we propose DeepSeq, a novel representation learning framework for sequential netlists. Specifically, we introduce a dedicated graph neural network (GNN) with a customized propagation scheme to exploit the temporal correlations between gates in sequential circuits. To ensure effective learning, we propose to use a multi-task training objective with two sets of strongly related supervision: logic probability and transition probability at each node. A novel dual attention aggregation mechanism is introduced to facilitate learning both tasks efficiently. Experimental results on various benchmark circuits show that DeepSeq outperforms other GNN models for sequential circuit learning. We evaluate the generalization capability of DeepSeq on a downstream power estimation task. After fine-tuning, DeepSeq can accurately estimate power across various circuits under different workloads.

Citations (5)

Summary

We haven't generated a summary for this paper yet.