Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient physics-informed neural networks using hash encoding (2302.13397v1)

Published 26 Feb 2023 in cs.LG and physics.comp-ph

Abstract: Physics-informed neural networks (PINNs) have attracted a lot of attention in scientific computing as their functional representation of partial differential equation (PDE) solutions offers flexibility and accuracy features. However, their training cost has limited their practical use as a real alternative to classic numerical methods. Thus, we propose to incorporate multi-resolution hash encoding into PINNs to improve the training efficiency, as such encoding offers a locally-aware (at multi resolution) coordinate inputs to the neural network. Borrowed from the neural representation field community (NeRF), we investigate the robustness of calculating the derivatives of such hash encoded neural networks with respect to the input coordinates, which is often needed by the PINN loss terms. We propose to replace the automatic differentiation with finite-difference calculations of the derivatives to address the discontinuous nature of such derivatives. We also share the appropriate ranges for the hash encoding hyperparameters to obtain robust derivatives. We test the proposed method on three problems, including Burgers equation, Helmholtz equation, and Navier-Stokes equation. The proposed method admits about a 10-fold improvement in efficiency over the vanilla PINN implementation.

Citations (18)

Summary

We haven't generated a summary for this paper yet.