Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Domain Adaptation for Low-dose CT Reconstruction via Bayesian Uncertainty Alignment (2302.13251v2)

Published 26 Feb 2023 in eess.IV, cs.CV, and cs.LG

Abstract: Low-dose computed tomography (LDCT) image reconstruction techniques can reduce patient radiation exposure while maintaining acceptable imaging quality. Deep learning is widely used in this problem, but the performance of testing data (a.k.a. target domain) is often degraded in clinical scenarios due to the variations that were not encountered in training data (a.k.a. source domain). Unsupervised domain adaptation (UDA) of LDCT reconstruction has been proposed to solve this problem through distribution alignment. However, existing UDA methods fail to explore the usage of uncertainty quantification, which is crucial for reliable intelligent medical systems in clinical scenarios with unexpected variations. Moreover, existing direct alignment for different patients would lead to content mismatch issues. To address these issues, we propose to leverage a probabilistic reconstruction framework to conduct a joint discrepancy minimization between source and target domains in both the latent and image spaces. In the latent space, we devise a Bayesian uncertainty alignment to reduce the epistemic gap between the two domains. This approach reduces the uncertainty level of target domain data, making it more likely to render well-reconstructed results on target domains. In the image space, we propose a sharpness-aware distribution alignment to achieve a match of second-order information, which can ensure that the reconstructed images from the target domain have similar sharpness to normal-dose CT images from the source domain. Experimental results on two simulated datasets and one clinical low-dose imaging dataset show that our proposed method outperforms other methods in quantitative and visualized performance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com