Classifying solutions of ${\rm SU}(n+1)$ Toda system around a singular source (2302.13068v2)
Abstract: Consider a positive integer $n$ and $\gamma_1>-1,\cdots,\gamma_n>-1$. Let $D={z\in {\Bbb C}:|z|<1}$, and let $(a_{ij}){n\times n}$ denote the Cartan matrix of $\frak{su}(n+1)$. Utilizing the ordinary differential equation of $(n+1)$th order around a singular source of ${\rm SU}(n+1)$ Toda system, as discovered by Lin-Wei-Ye ({\it Invent Math}, {\bf 190}(1):169-207, 2012), we precisely characterize a solution $(u_1,\cdots, u_n)$ to the ${\rm SU}(n+1)$ Toda system \begin{equation*} \begin{cases} \frac{\partial2 u_i}{\partial z\partial \bar z}+\sum{j=1}n a_{ij} e{u_j}&=\pi \gamma i\delta _0\,\,{\rm on}\,\, D\ \frac{\sqrt{-1}}{2}\,\int{D\backslash {0}} e{u_{i} }{\rm d}z\wedge {\rm d}\bar z &< \infty \end{cases} \quad \text{for all}\quad i=1,\cdots, n \end{equation*} using $(n+1)$ holomorphic functions that satisfy the normalized condition. Additionally, we demonstrate that for each $1\leq i\leq n$, $0$ represents the cone singularity with angle $2\pi(1+\gamma_i)$ for the metric $e{u_i}|{\rm d}z|2$ on $D\backslash{0}$, which can be locally characterized by $(n-1)$ non-vanishing holomorphic functions at $0$.