Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Annotating Covert Hazardous Driving Scenarios Online: Utilizing Drivers' Electroencephalography (EEG) Signals (2302.12424v1)

Published 24 Feb 2023 in cs.HC

Abstract: As autonomous driving systems prevail, it is becoming increasingly critical that the systems learn from databases containing fine-grained driving scenarios. Most databases currently available are human-annotated; they are expensive, time-consuming, and subject to behavioral biases. In this paper, we provide initial evidence supporting a novel technique utilizing drivers' electroencephalography (EEG) signals to implicitly label hazardous driving scenarios while passively viewing recordings of real-road driving, thus sparing the need for manual annotation and avoiding human annotators' behavioral biases during explicit report. We conducted an EEG experiment using real-life and animated recordings of driving scenarios and asked participants to report danger explicitly whenever necessary. Behavioral results showed the participants tended to report danger only when overt hazards (e.g., a vehicle or a pedestrian appearing unexpectedly from behind an occlusion) were in view. By contrast, their EEG signals were enhanced at the sight of both an overt hazard and a covert hazard (e.g., an occlusion signalling possible appearance of a vehicle or a pedestrian from behind). Thus, EEG signals were more sensitive to driving hazards than explicit reports. Further, the Time-Series AI (TSAI) successfully classified EEG signals corresponding to overt and covert hazards. We discuss future steps necessary to materialize the technique in real life.

Citations (2)

Summary

We haven't generated a summary for this paper yet.